1
|
Shahid Z, Veenuttranon K, Lu X, Chen J. Recent Advances in the Fabrication and Application of Electrochemical Paper-Based Analytical Devices. BIOSENSORS 2024; 14:561. [PMID: 39590020 PMCID: PMC11592294 DOI: 10.3390/bios14110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
In response to growing environmental concerns, the scientific community is increasingly incorporating green chemistry principles into modern analytical techniques. Electrochemical paper-based analytical devices (ePADs) have emerged as a sustainable and efficient alternative to conventional analytical devices, offering robust applications in point-of-care testing, personalized healthcare, environmental monitoring, and food safety. ePADs align with green chemistry by minimizing reagent use, reducing energy consumption, and being disposable, making them ideal for eco-friendly and cost-effective analyses. Their user-friendly interface, alongside sensitive and selective detection capabilities, has driven their popularity in recent years. This review traces the evolution of ePADs from simple designs to complex multilayered structures that optimize analyte flow and improve detection. It also delves into innovative electrode fabrication methods, assessing key advantages, limitations, and modification strategies for enhanced sensitivity. Application-focused sections explore recent advancements in using ePADs for detecting diseases, monitoring environmental hazards like heavy metals and bacterial contamination, and screening contaminants in food. The integration of cutting-edge technologies, such as wearable wireless devices and the Internet of Things (IoT), further positions ePADs at the forefront of point-of-care testing (POCT). Finally, the review identifies key research gaps and proposes future directions for the field.
Collapse
Affiliation(s)
- Zarfashan Shahid
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kornautchaya Veenuttranon
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| |
Collapse
|
2
|
Cerdeira Ferreira LM, Lima D, Marcolino-Junior LH, Bergamini MF, Kuss S, Campanhã Vicentini F. Cutting-edge biorecognition strategies to boost the detection performance of COVID-19 electrochemical biosensors: A review. Bioelectrochemistry 2024; 157:108632. [PMID: 38181592 DOI: 10.1016/j.bioelechem.2023.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Electrochemical biosensors are known for their high sensitivity, selectivity, and low cost. Recently, they have gained significant attention and became particularly important as promising tools for the detection of COVID-19 biomarkers, since they offer a rapid and accurate means of diagnosis. Biorecognition strategies are a crucial component of electrochemical biosensors and determine their specificity and sensitivity based on the interaction of biological molecules, such as antibodies, enzymes, and DNA, with target analytes (e.g., viral particles, proteins and genetic material) to create a measurable signal. Different biorecognition strategies have been developed to enhance the performance of electrochemical biosensors, including direct, competitive, and sandwich binding, alongside nucleic acid hybridization mechanisms and gene editing systems. In this review article, we present the different strategies used in electrochemical biosensors to target SARS-CoV-2 and other COVID-19 biomarkers, as well as explore the advantages and disadvantages of each strategy and highlight recent progress in this field. Additionally, we discuss the challenges associated with developing electrochemical biosensors for clinical COVID-19 diagnosis and their widespread commercialization.
Collapse
Affiliation(s)
- Luís Marcos Cerdeira Ferreira
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000, Buri, SP, Brazil; Laboratory of Electrochemical Sensors (LabSensE) Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Dhésmon Lima
- Laboratory for Bioanalytics and Electrochemical Sensing (LBES), Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada.
| | - Luiz Humberto Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE) Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Marcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LabSensE) Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Sabine Kuss
- Laboratory for Bioanalytics and Electrochemical Sensing (LBES), Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Fernando Campanhã Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000, Buri, SP, Brazil.
| |
Collapse
|
3
|
Rocha J, de Oliveira JC, Bettini J, Strauss M, Selmi GS, Okazaki AK, de Oliveira RF, Lima RS, Santhiago M. Tuning the Chemical and Electrochemical Properties of Paper-Based Carbon Electrodes by Pyrolysis of Polydopamine. ACS MEASUREMENT SCIENCE AU 2024; 4:188-200. [PMID: 38645575 PMCID: PMC11027207 DOI: 10.1021/acsmeasuresciau.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 04/23/2024]
Abstract
Electrochemical paper-based analytical devices represent an important platform for portable, low-cost, affordable, and decentralized diagnostics. For this kind of application, chemical functionalization plays a pivotal role to ensure high clinical performance by tuning surface properties and the area of electrodes. However, controlling different surface properties of electrodes by using a single functionalization route is still challenging. In this work, we attempted to tune the wettability, chemical composition, and electroactive area of carbon-paper-based devices by thermally treating polydopamine (PDA) at different temperatures. PDA films were deposited onto pyrolyzed paper (PP) electrodes and thermally treated in the range of 300-1000 °C. After deposition of PDA, the surface is rich in nitrogen and oxygen, it is superhydrophilic, and it has a high electroactive area. As the temperature increases, the surface becomes hydrophobic, and the electroactive area decreases. The surface modifications were followed by Raman, X-ray photoelectron microscopy (XPS), laser scanning confocal microscopy (LSCM), contact angle, scanning electron microscopy (SEM-EDS), electrical measurements, transmission electron microscopy (TEM), and electrochemical experiments. In addition, the chemical composition of nitrogen species can be tuned on the surface. As a proof of concept, we employed PDA-treated surfaces to anchor [AuCl4]- ions. After electrochemical reduction, we observed that it is possible to control the size of the nanoparticles on the surface. Our route opens a new avenue to add versatility to electrochemical interfaces in the field of paper-based electrochemical biosensors.
Collapse
Affiliation(s)
- Jaqueline
F. Rocha
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| | - Julia C. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Jefferson Bettini
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Mathias Strauss
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Guilherme S. Selmi
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Anderson K. Okazaki
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Rafael F. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Renato S. Lima
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
- Institute
of Chemistry, University of Campinas, São Paulo, Campinas 13083-970, Brazil
- São
Carlos Institute of Chemistry, University
of São Paulo, São Paulo, São Carlos 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| |
Collapse
|
4
|
Costa JNY, Pimentel GJC, Poker JA, Merces L, Paschoalino WJ, Vieira LCS, Castro ACH, Alves WA, Ayres LB, Kubota LT, Santhiago M, Garcia CD, Piazzetta MHO, Gobbi AL, Shimizu FM, Lima RS. Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag. Adv Healthc Mater 2024; 13:e2303509. [PMID: 38245830 PMCID: PMC11468374 DOI: 10.1002/adhm.202303509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.
Collapse
Affiliation(s)
- Juliana N. Y. Costa
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Gabriel J. C. Pimentel
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Júlia A. Poker
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Leandro Merces
- Research Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Waldemir J. Paschoalino
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Luis C. S. Vieira
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Ana C. H. Castro
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Wendel A. Alves
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Lucas B. Ayres
- Department of ChemistryClemson UniversityClemsonSC29634USA
| | - Lauro T. Kubota
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | | | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Flávio M. Shimizu
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
- Department of ChemistryClemson UniversityClemsonSC29634USA
- São Carlos Institute of ChemistryUniversity of São PauloSão CarlosSão Paulo13565‐590Brazil
| |
Collapse
|
5
|
Rocha JF, Hasimoto LH, Santhiago M. Recent progress and future perspectives of polydopamine nanofilms toward functional electrochemical sensors. Anal Bioanal Chem 2023; 415:3799-3816. [PMID: 36645457 PMCID: PMC9841946 DOI: 10.1007/s00216-023-04522-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Jaqueline F Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Leonardo H Hasimoto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| |
Collapse
|
6
|
Martins TS, Machado SAS, Oliveira ON, Bott-Neto JL. Optimized paper-based electrochemical sensors treated in acidic media to detect carbendazim on the skin of apple and cabbage. Food Chem 2023; 410:135429. [PMID: 36641915 DOI: 10.1016/j.foodchem.2023.135429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Wearable sensors such as those made with paper are needed for non-destructive routine analysis of pesticides on plants, fruits, and vegetables. Herein we report on electrochemical sensors made with screen-printed carbon electrodes on kraft and parchment papers to detect the fungicide carbendazim. A systematic optimization was performed to find that electrochemical sensors on kraft paper treated in an acidic medium led to the highest performance, with a detection limit of 0.06 µM for carbendazim. The enhanced sensitivity for this sensor was attributed to the porous nature of kraft paper, which allowed for a large electrode surface area, and to the carboxylic groups formed during electrochemical activation. As a proof-of-concept, the electrochemical sensor attached to the skin of apple and cabbage was used to detect carbendazim with the same performance as the gold standard method, thus demonstrating that the sensor can be used in the farm and on supermarket shelves.
Collapse
Affiliation(s)
- Thiago S Martins
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - José L Bott-Neto
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Ionescu RE. Updates on the Biofunctionalization of Gold Nanoparticles for the Rapid and Sensitive Multiplatform Diagnosis of SARS-CoV-2 Virus and Its Proteins: From Computational Models to Validation in Human Samples. Int J Mol Sci 2023; 24:ijms24119249. [PMID: 37298201 DOI: 10.3390/ijms24119249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Since the outbreak of the pandemic respiratory virus SARS-CoV-2 (COVID-19), academic communities and governments/private companies have used several detection techniques based on gold nanoparticles (AuNPs). In this emergency context, colloidal AuNPs are highly valuable easy-to-synthesize biocompatible materials that can be used for different functionalization strategies and rapid viral immunodiagnosis. In this review, the latest multidisciplinary developments in the bioconjugation of AuNPs for the detection of SARS-CoV-2 virus and its proteins in (spiked) real samples are discussed for the first time, with reference to the optimal parameters provided by three approaches: one theoretical, via computational prediction, and two experimental, using dry and wet chemistry based on single/multistep protocols. Overall, to achieve high specificity and low detection limits for the target viral biomolecules, optimal running buffers for bioreagent dilutions and nanostructure washes should be validated before conducting optical, electrochemical, and acoustic biosensing investigations. Indeed, there is plenty of room for improvement in using gold nanomaterials as stable platforms for ultrasensitive and simultaneous "in vitro" detection by the untrained public of the whole SARS-CoV-2 virus, its proteins, and specific developed IgA/IgM/IgG antibodies (Ab) in bodily fluids. Hence, the lateral flow assay (LFA) approach is a quick and judicious solution to combating the pandemic. In this context, the author classifies LFAs according to four generations to guide readers in the future development of multifunctional biosensing platforms. Undoubtedly, the LFA kit market will continue to improve, adapting researchers' multidetection platforms for smartphones with easy-to-analyze results, and establishing user-friendly tools for more effective preventive and medical treatments.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie, CS 42060, CEDEX, 10004 Troyes, France
| |
Collapse
|
8
|
de Lima Tinoco MV, Fujii LR, Nicoliche CYN, Giordano GF, Barbosa JA, da Rocha JF, Dos Santos GT, Bettini J, Santhiago M, Strauss M, Lima RS. Scalable and green formation of graphitic nanolayers produces highly conductive pyrolyzed paper toward sensitive electrochemical sensors. NANOSCALE 2023; 15:6201-6214. [PMID: 36917005 DOI: 10.1039/d2nr07080d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
While pyrolyzed paper (PP) is a green and abundant material that can provide functionalized electrodes with wide detection windows for a plethora of targets, it poses long-standing challenges against sensing assays such as poor electrical conductivity, with resistivities generally higher than 200.0 mΩ cm (e.g., gold and silver show resistivities 1000-fold lower, ∼0.2 mΩ cm). In this regard, the fundamental hypothesis that drives this work is whether a scalable, cost-effective, and eco-friendly strategy is capable of significantly reducing the resistivity of PP electrodes toward the development of sensitive electrochemical sensors, whether faradaic or capacitive. We address this hypothesis by simply annealing PP under an isopropanol atmosphere for 1 h, reaching resistivities as low as 7 mΩ cm. Specifically, the annealing of PP at 800 or 1000 °C under isopropanol vapor leads to the formation of a highly graphitic nanolayer (∼15 nm) on the PP surface, boosting conductivity as the delocalization of π electrons stemming from carbon sp2 is favored. The reduction of carbonyl groups and the deposition of dehydrated isopropanol during the annealing process are hypothesized herein as the dominant PP graphitization mechanisms. Electrochemical analyses demonstrated the capability of the annealed PP to increase the charge-transfer kinetics, with the optimum heterogeneous standard rate constant being roughly 3.6 × 10-3 cm s-1. This value is larger than the constants reported for other carbon electrodes and indium tin oxide. Furthermore, freestanding fingers of the annealed PP were prototyped using a knife plotter to fabricate impedimetric on-leaf electrodes. These wearable sensors ensured the real-time and in situ monitoring of the loss of water content from soy leaves, outperforming non-annealed electrodes in terms of reproducibility and sensitivity. Such an application is of pivotal importance for precision agriculture and development of agricultural inputs. This work addresses the foundations for the achievement of conductive PP in a scalable, low-cost, simple, and eco-friendly way, i.e. without producing any liquid chemical waste, providing new opportunities to translate PP-based sensitive electrochemical devices into practical use.
Collapse
Affiliation(s)
- Marcos V de Lima Tinoco
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Lucas R Fujii
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Caroline Y N Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Gabriela F Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Julia A Barbosa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Jaqueline F da Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Gabriel T Dos Santos
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Material Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90010-150, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
9
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
10
|
Lu L, Zhang H, Wang Y, Zhang P, Zhu Z, Yang C. Dissolution-Enhanced Luminescence Enhanced Digital Microfluidics Immunoassay for Sensitive and Automated Detection of H5N1. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6526-6535. [PMID: 36708351 DOI: 10.1021/acsami.2c20289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein bioassay is a critical tool for the screening and detection of protein biomarkers in disease diagnostics and biological applications. However, the detection sensitivity and system automation of current immunoassays do not meet the emerging demands of clinical applications. Here, we developed a dissolution-enhanced luminescence-enhanced digital microfluidics immunoassay (DEL-DMF), which significantly improves the sensitivity and automation of the protein bioassay. In DEL-DMF, the sample and reagent droplets are controlled to complete the processes of sample transport, immunoreaction, and buffer washing, which not only minimizes sample consumption to 2 μL and enhances the binding efficiency of immunoreaction but also streamlines all the procedures and simplifies the process of immunoassay. Moreover, dissolution-enhanced luminescence using NaEuF4 NPs as nanoprobes boosts the fluorescence and increases the sensitivity of the bioassay. We demonstrate the enhanced analytical performance of our DEL-DMF immunoassay to detect H5N1 hemagglutinin in human serum and saliva. A limit of detection of 1.16 pM was achieved in less than 0.5 h with only 2 μL sample consumption. Overall, our DEL-DMF immunoassay combines the merits of the microfluidics platform and dissolution-enhanced luminescence, thus affording superior detection sensitivity and system automation for protein biomarkers. This novel immunoassay microsystem holds great potential in clinical and biological applications.
Collapse
Affiliation(s)
- Lianyu Lu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yang Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng Zhang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
11
|
Ong V, Soleimani A, Amirghasemi F, Khazaee Nejad S, Abdelmonem M, Razaviyayn M, Hosseinzadeh P, Comai L, Mousavi MPS. Impedimetric Sensing: An Emerging Tool for Combating the COVID-19 Pandemic. BIOSENSORS 2023; 13:204. [PMID: 36831970 PMCID: PMC9953732 DOI: 10.3390/bios13020204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/12/2023]
Abstract
The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The current standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and requires specialized equipment and reagents to be performed correctly. This make it unsuitable for widespread, rapid testing and causes poor individual and policy decision-making. Rapid antigen tests (RATs) are a widely used alternative that provide results quickly but have low sensitivity and are prone to false negatives, particularly in cases with lower viral burden. Electrochemical sensors have shown much promise in filling this technology gap, and impedance spectroscopy specifically has exciting potential in rapid screening of COVID-19. Due to the data-rich nature of impedance measurements performed at different frequencies, this method lends itself to machine-leaning (ML) algorithms for further data processing. This review summarizes the current state of impedance spectroscopy-based point-of-care sensors for the detection of the SARS-CoV-2 virus. This article also suggests future directions to address the technology's current limitations to move forward in this current pandemic and prepare for future outbreaks.
Collapse
Affiliation(s)
- Victor Ong
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sina Khazaee Nejad
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mona Abdelmonem
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Meisam Razaviyayn
- Daniel J. Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Parisa Hosseinzadeh
- Knight Campus Center Department of Bioengineering, University of Oregon, Eugene, OR 97403, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maral P. S. Mousavi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
12
|
Huang Y, Wu H, Xie N, Zhang X, Zou Z, Deng M, Cheng W, Guo X, Ding S, Guo B. Conductive Antifouling Sensing Coating: A Bionic Design Inspired by Natural Cell Membrane. Adv Healthc Mater 2023; 12:e2202790. [PMID: 36709050 DOI: 10.1002/adhm.202202790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/15/2023] [Indexed: 01/30/2023]
Abstract
Constructing antifouling coatings for biosensing interfaces is a major hurdle in driving their practical application. Inspired by the excellent antifouling properties of natural cell membranes, a conductive biomimetic antifouling interface coating is proposed, which highly mimics the excellent antifouling properties of biofilms while overcoming the low conductivity defects of conventional coatings. Polyethylene glycol-Au gel is selected as the support structure and electron transfer layer, on which phospholipids and ampholytes are applied to construct a hydration layer for antifouling. The coating maintains promisingly low adsorption in biological matrices such as whole blood, serum, and urine, and has been utilized to construct multimodal clinical assay systems that provide favorable concordance with clinical results. Thus, this conductive bio-coating breaks the last barrier of biosensors toward practical applications and possesses extremely significant application value.
Collapse
Affiliation(s)
- Yi Huang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ning Xie
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xuewen Zhang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhenyang Zou
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Meng Deng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.,Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
13
|
Giordano GF, Ferreira LF, Bezerra ÍRS, Barbosa JA, Costa JNY, Pimentel GJC, Lima RS. Machine learning toward high-performance electrochemical sensors. Anal Bioanal Chem 2023:10.1007/s00216-023-04514-z. [PMID: 36637495 PMCID: PMC9838410 DOI: 10.1007/s00216-023-04514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
The so-coined fourth paradigm in science has reached the sensing area, with the use of machine learning (ML) toward data-driven improvements in sensitivity, reproducibility, and accuracy, along with the determination of multiple targets from a single measurement using multi-output regression models. Particularly, the use of supervised ML models trained on large data sets produced by electrical and electrochemical bio/sensors has emerged as an impacting trend in the literature by allowing accurate analyses even in the presence of usual issues such as electrode fouling, poor signal-to-noise ratio, chemical interferences, and matrix effects. In this trend article, apart from an outlook for the coming years, we present examples from the literature that demonstrate how helpful ML algorithms can be for dispensing the adoption of experimental methods to address the aforesaid interfering issues, ultimately contributing to translate testing technologies into on-site, practical, and daily applications.
Collapse
Affiliation(s)
- Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil
| | - Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970 Brazil
| | - Ítalo R. S. Bezerra
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Júlia A. Barbosa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590 Brazil
| | - Juliana N. Y. Costa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Gabriel J. C. Pimentel
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,School of Sciences, São Paulo State University, Bauru, São Paulo 17033-360 Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil ,Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970 Brazil ,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil ,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590 Brazil
| |
Collapse
|
14
|
Antifouling electrochemical sensor-based on mesoporous silica film for imidacloprid detection in Traditional Chinese medicine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
de Brito Ayres L, Brooks J, Whitehead K, Garcia CD. Rapid Detection of Staphylococcus aureus Using Paper-Derived Electrochemical Biosensors. Anal Chem 2022; 94:16847-16854. [DOI: 10.1021/acs.analchem.2c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Lucas de Brito Ayres
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| | - Jordan Brooks
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| | - Kristi Whitehead
- Department of Biological Sciences, Clemson University, Clemson 29634, South Carolina, United States
| | - Carlos D. Garcia
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| |
Collapse
|
16
|
Castro ACH, Bezerra ÍRS, Pascon AM, da Silva GH, Philot EA, de Oliveira VL, Mancini RSN, Schleder GR, Castro CE, de Carvalho LRS, Fernandes BHV, Cilli EM, Sanches PRS, Santhiago M, Charlie-Silva I, Martinez DST, Scott AL, Alves WA, Lima RS. Modular Label-Free Electrochemical Biosensor Loading Nature-Inspired Peptide toward the Widespread Use of COVID-19 Antibody Tests. ACS NANO 2022; 16:14239-14253. [PMID: 35969505 PMCID: PMC9397565 DOI: 10.1021/acsnano.2c04364] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/11/2022] [Indexed: 05/16/2023]
Abstract
Limitations of the recognition elements in terms of synthesis, cost, availability, and stability have impaired the translation of biosensors into practical use. Inspired by nature to mimic the molecular recognition of the anti-SARS-CoV-2 S protein antibody (AbS) by the S protein binding site, we synthesized the peptide sequence of Asn-Asn-Ala-Thr-Asn-COOH (abbreviated as PEP2003) to create COVID-19 screening label-free (LF) biosensors based on a carbon electrode, gold nanoparticles (AuNPs), and electrochemical impedance spectroscopy. The PEP2003 is easily obtained by chemical synthesis, and it can be adsorbed on electrodes while maintaining its ability for AbS recognition, further leading to a sensitivity 3.4-fold higher than the full-length S protein, which is in agreement with the increase in the target-to-receptor size ratio. Peptide-loaded LF devices based on noncovalent immobilization were developed by affording fast and simple analyses, along with a modular functionalization. From studies by molecular docking, the peptide-AbS binding was found to be driven by hydrogen bonds and hydrophobic interactions. Moreover, the peptide is not amenable to denaturation, thus addressing the trade-off between scalability, cost, and robustness. The biosensor preserves 95.1% of the initial signal for 20 days when stored dry at 4 °C. With the aid of two simple equations fitted by machine learning (ML), the method was able to make the COVID-19 screening of 39 biological samples into healthy and infected groups with 100.0% accuracy. By taking advantage of peptide-related merits combined with advances in surface chemistry and ML-aided accuracy, this platform is promising to bring COVID-19 biosensors into mainstream use toward straightforward, fast, and accurate analyses at the point of care, with social and economic impacts being achieved.
Collapse
Affiliation(s)
- Ana C. H. Castro
- Center for Natural and Human Sciences,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
| | - Ítalo R. S. Bezerra
- Brazilian Nanotechnology National Laboratory,
Brazilian Center for Research in Energy and Materials,
Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
| | - Aline M. Pascon
- Brazilian Nanotechnology National Laboratory,
Brazilian Center for Research in Energy and Materials,
Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
| | - Gabriela H. da Silva
- Brazilian Nanotechnology National Laboratory,
Brazilian Center for Research in Energy and Materials,
Campinas, São Paulo 13083-970, Brazil
| | - Eric A. Philot
- Center for Mathematics, Computing and Cognition,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
| | - Vivian L. de Oliveira
- Center for Natural and Human Sciences,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
- Laboratory of Immunology, Heart Institute,
University of São Paulo, São Paulo, São
Paulo 05508-000, Brazil
| | - Rodrigo S. N. Mancini
- Center for Natural and Human Sciences,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
| | - Gabriel R. Schleder
- John A. Paulson School of Engineering and Applied
Sciences, Harvard University, Cambridge, Massachusetts 02138,
United States
| | - Carlos E. Castro
- Center for Natural and Human Sciences,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
| | | | | | - Eduardo M. Cilli
- Institute of Chemistry, São Paulo
State University, Araraquara, São Paulo 14800-900,
Brazil
| | - Paulo R. S. Sanches
- Institute of Chemistry, São Paulo
State University, Araraquara, São Paulo 14800-900,
Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory,
Brazilian Center for Research in Energy and Materials,
Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
| | - Ives Charlie-Silva
- Institute of Biomedical Sciences,
University of São Paulo, São Paulo, São
Paulo 05508-000, Brazil
| | - Diego S. T. Martinez
- Brazilian Nanotechnology National Laboratory,
Brazilian Center for Research in Energy and Materials,
Campinas, São Paulo 13083-970, Brazil
| | - Ana L. Scott
- Center for Mathematics, Computing and Cognition,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
| | - Wendel A. Alves
- Center for Natural and Human Sciences,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory,
Brazilian Center for Research in Energy and Materials,
Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences,
Federal University of ABC, Santo André, São
Paulo 09210-580, Brazil
- Institute of Chemistry, University of
Campinas, Campinas, São Paulo 13083-970,
Brazil
- São Carlos Institute of Chemistry,
University of São Paulo, São Carlos, São
Paulo 09210-580, Brazil
| |
Collapse
|
17
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
18
|
Ferreira LF, Giordano GF, Gobbi AL, Piazzetta MHO, Schleder GR, Lima RS. Real-Time and In Situ Monitoring of the Synthesis of Silica Nanoparticles. ACS Sens 2022; 7:1045-1057. [PMID: 35417147 DOI: 10.1021/acssensors.1c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time and in situ monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control. In fact, the lack of reproducibility in the synthesis of NMs is a bottleneck against the translation of nanotechnologies into the market toward daily practice. Here, we address an impedimetric millifluidic sensor with data processing by machine learning (ML) as a sensing platform to monitor silica nanoparticles (SiO2NPs) over a 24 h synthesis from a single measurement. The SiO2NPs were selected as a model NM because of their extensive applications. Impressively, simple ML-fitted descriptors were capable of overcoming interferences derived from SiO2NP adsorption over the signals of polarizable Au interdigitate electrodes to assure the determination of the size and concentration of nanoparticles over synthesis while meeting the trade-off between accuracy and speed/simplicity of computation. The root-mean-square errors were calculated as ∼2.0 nm (size) and 2.6 × 1010 nanoparticles mL-1 (concentration). Further, the robustness of the ML size descriptor was successfully challenged in data obtained along independent syntheses using different devices, with the global average accuracy being 103.7 ± 1.9%. Our work advances the developments required to transform a closed flow system basically encompassing the reactional flask and an impedimetric sensor into a scalable and user-friendly platform to assess the in situ synthesis of SiO2NPs. Since the sensor presents a universal response principle, the method is expected to enable the monitoring of other NMs. Such a platform may help to pave the way for translating "sense-act" systems into practice use in nanotechnology.
Collapse
Affiliation(s)
- Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R. Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
19
|
Barbosa JA, Freitas VMS, Vidotto LHB, Schleder GR, de Oliveira RAG, da Rocha JF, Kubota LT, Vieira LCS, Tolentino HCN, Neckel IT, Gobbi AL, Santhiago M, Lima RS. Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22989-23001. [PMID: 35311272 DOI: 10.1021/acsami.2c02943] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Impedimetric wearable sensors are a promising strategy for determining the loss of water content (LWC) from leaves because they can afford on-site and nondestructive quantification of cellular water from a single measurement. Because the water content is a key marker of leaf health, monitoring of the LWC can lend key insights into daily practice in precision agriculture, toxicity studies, and the development of agricultural inputs. Ongoing challenges with this monitoring are the on-leaf adhesion, compatibility, scalability, and reproducibility of the electrodes, especially when subjected to long-term measurements. This paper introduces a set of sensing material, technological, and data processing solutions that overwhelm such obstacles. Mass-production-suitable electrodes consisting of stand-alone Ni films obtained by well-established microfabrication methods or ecofriendly pyrolyzed paper enabled reproducible determination of the LWC from soy leaves with optimized sensibilities of 27.0 (Ni) and 17.5 kΩ %-1 (paper). The freestanding design of the Ni electrodes was further key to delivering high on-leaf adhesion and long-term compatibility. Their impedances remained unchanged under the action of wind at velocities of up to 2.00 m s-1, whereas X-ray nanoprobe fluorescence assays allowed us to confirm the Ni sensor compatibility by the monitoring of the soy leaf health in an electrode-exposed area. Both electrodes operated through direct transfer of the conductive materials on hairy soy leaves using an ordinary adhesive tape. We used a hand-held and low-power potentiostat with wireless connection to a smartphone to determine the LWC over 24 h. Impressively, a machine-learning model was able to convert the sensing responses into a simple mathematical equation that gauged the impairments on the water content at two temperatures (30 and 20 °C) with reduced root-mean-square errors (0.1% up to 0.3%). These data suggest broad applicability of the platform by enabling direct determination of the LWC from leaves even at variable temperatures. Overall, our findings may help to pave the way for translating "sense-act" technologies into practice toward the on-site and remote investigation of plant drought stress. These platforms can provide key information for aiding efficient data-driven management and guiding decision-making steps.
Collapse
Affiliation(s)
- Júlia A Barbosa
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
| | - Vitoria M S Freitas
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Faculty of Chemical Engineering, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Lourenço H B Vidotto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ricardo A G de Oliveira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Jaqueline F da Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Lauro T Kubota
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luis C S Vieira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Hélio C N Tolentino
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Itamar T Neckel
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|