1
|
Wu B, Jiang B, Guo C, Zhang J, Li Q, Wang N, Song Z, Tian C, Antonietti M, Fu H. Mild-Condition Photocatalytic Reforming of Methanol-Water by a Hierarchical, Asymmetry Carbon Nitride. Angew Chem Int Ed Engl 2025; 64:e202418677. [PMID: 39482249 DOI: 10.1002/anie.202418677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
As a reproducible intermediate for hydrogen (H2) and carbon cycling, methanol mixed with water (H2O) in a ratio of 1 : 1 can multiply the outcome of green H2 generation via Photocatalytic reforming of methanol-H2O (PRMW). Hitherto, low-energy and mild-condition PRMW remains a serious challenge. Here, the amino acid-derived carbon nitrides (ACN) were synthesized supramolecular precursor strategy for PRMW and achieved excellent performance (H2, 35.6 mmol h-1 g-1; CO2, 11.5 mmol h-1 g-1) under sunlight at 35 °C. It was revealed that the surface-terminating carboxyl groups (-COOH) promote the dark dehydrogenation of methanol on MetCNx to form methoxy (*OCH3) and methylol (*CH2OH) simultaneously, with the hydroxyl (*OH) generated by photostimulated H2O oxidation promotes the C-H activation of formaldehyde, then leads the whole reaction into the formation of CO2 and three H2. The extended light absorption, enhanced charge separation and transport, and efficient surface reaction improve photocatalytic efficiency.
Collapse
Affiliation(s)
- Baogang Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Changliang Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Jiawei Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Qi Li
- College of Material Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Nan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Zichen Song
- College of Material Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| |
Collapse
|
2
|
Zhao Z, Meng X. Rapid Joule heating synthesis of Pt/C 3N 4-NVs for photoelectrocatalytic water splitting to produce H 2. Chem Commun (Camb) 2025; 61:516-519. [PMID: 39641670 DOI: 10.1039/d4cc05545d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Photoelectrocatalytic water splitting to produce hydrogen has great potential for industrial applications. Herein, Pt/C3N4-NVs was prepared as a photoanode, its photoelectrocatalytic hydrogen generation rate reached 717.82 μmol g-1 h-1 under 300 W Xenon lamp illumination when the bias voltage was 1.23 V (vs. RHE), and the photocurrent density remained stable for 24 h. This work demonstrated that the C3N4-based photocatalysts have good photostability and prospects for industrial applications.
Collapse
Affiliation(s)
- Zehui Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
3
|
Wang J, Huang ZQ, Nie L. Molten Salt Modulation of Potassium-Nitrogen-Carbon for the Breaking Kinetics Bottleneck of Photocatalytic Overall Water Splitting and Environmental Impact Reduction. ACS NANO 2024; 18:26902-26910. [PMID: 39291328 DOI: 10.1021/acsnano.4c08309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Sluggish interfacial water dissociation and the O2 evolution reaction (OER) kinetics are the main obstacles that limit the photocatalytic overall water-splitting performance. A molten salt modulation of potassium-nitrogen-carbon is herein demonstrated as the formation of highly crystalline potassium-doped poly(triazine imide) (KPTI). The in situ X-ray diffraction patterns and theoretical calculation show that the KCl melt can significantly reduce the free energy for the polycondensation of triazine building blocks owing to the formation of a kinetically stable KPTI. Benefiting from the presence of potassium-carbon-nitrogen moiety, the catalyst not only weakens the excitonic confinement to improve the separation efficiency of photogenerated charge carriers but also enhances the stability of carbon sites by suppressing the undesired C═O formation. Moreover, KPTI accelerates water dissociation by forming interfacial K·H2O clusters with an ordered structure, which supplies sufficient protons for the H2 evolution reaction and lowers the energy barrier to enhance the kinetics of OER. Therefore, a stable photocatalytic overall water-splitting performance can be achieved over KPTI with a stoichiometric generation of products (H2 and O2). Life cycle assessment shows that a carbon-neutral scenario can be achieved on KPTI production in the near term with an increase in green power in the electricity grid.
Collapse
Affiliation(s)
- Jing Wang
- School of Materials and Chemical Engineering, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Zheng Qing Huang
- School of Materials and Chemical Engineering, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Longhui Nie
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, P. R. China
| |
Collapse
|
4
|
Mondal S, Salati M, Nicaso M, Albero J, Segado-Centellas M, Volokh M, Bo C, García H, Gil-Sepulcre M, Llobet A, Shalom M. Supramolecular interaction of a molecular catalyst with a polymeric carbon nitride photoanode enhances photoelectrochemical activity and stability at neutral pH. Chem Sci 2024:d4sc04678a. [PMID: 39323522 PMCID: PMC11418009 DOI: 10.1039/d4sc04678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Polymeric carbon nitride (CN) emerged as an alternative, metal-free photoanode material for water-splitting photoelectrochemical cells (PECs). However, the performance of CN photoanodes is limited due to the slow charge separation and water oxidation kinetics due to poor interaction with water oxidation catalysts (WOCs). Moreover, operation under benign, neutral pH conditions is rarely reported. Here, we design a porous CN photoanode connected to a highly active molecular Ru-based WOC, which also acts as an additional photo-absorber. We show that the strong interaction between the π-system of the heptazine units within the CN with the CH groups of the WOC's equatorial ligand enables a strong connection between them and an efficient electronic communication path. The optimized photoanode exhibits a photocurrent density of 180 ± 10 μA cm-2 at 1.23 V vs. the reversible hydrogen electrode (RHE) with 89% faradaic efficiency for oxygen evolution with turnover numbers (TONs) in the range of 3300 and a turnover frequency (TOF) of 0.4 s-1, low onset potential, extended incident photon to current conversion, and good stability up to 5 h. This study may lead to the integration of molecular catalysts and polymeric organic absorbers using supramolecular interactions.
Collapse
Affiliation(s)
- Sanjit Mondal
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Martina Salati
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 Tarragona 43007 Spain
- Universitat Rovira i Virgili Av. Països Catalans 35 Tarragona 43007 Spain
| | - Marco Nicaso
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 Tarragona 43007 Spain
- Universitat Rovira i Virgili Av. Països Catalans 35 Tarragona 43007 Spain
| | - Josep Albero
- Instituto Universitario de Tecnología Química CSIC-UPV, Universitat Politècnica de València València 46022 Spain
| | - Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 Tarragona 43007 Spain
| | - Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 Tarragona 43007 Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química CSIC-UPV, Universitat Politècnica de València València 46022 Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 Tarragona 43007 Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 Tarragona 43007 Spain
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Valles Barcelona 08193 Spain
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
5
|
Li D, Li R, Zhao Y, Wang K, Fan K, Guo W, Chen Q, Li Y. g-C 3N 4 as ballistic electron transport "Tunnel" in CsPbBr 3-based ternary photocatalyst for gas phase CO 2 reduction. J Colloid Interface Sci 2024; 666:66-75. [PMID: 38583211 DOI: 10.1016/j.jcis.2024.03.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Perovskite CsPbBr3 quantum dot shows great potential in artificial photosynthesis, attributed to its outstanding optoelectronic properties. Nevertheless, its photocatalytic activity is hindered by insufficient catalytic active sites and severe charge recombination. In this work, a CsPbBr3@Ag-C3N4 ternary heterojunction photocatalyst is designed and synthesized for high-efficiency CO2 reduction. The CsPbBr3 quantum dots and Ag nanoparticles are chemically anchored on the surface of g-C3N4 sheets, forming an electron transfer tunnel from CsPbBr3 quantum dots to Ag nanoparticles via g-C3N4 sheets. The resulting CsPbBr3@Ag-C3N4 ternary photocatalyst, with spatial separation of photogenerated carriers, achieves a remarkable conversion rate of 19.49 μmol·g-1·h-1 with almost 100 % CO selectivity, a 3.13-fold enhancement in photocatalytic activity as compared to CsPbBr3 quantum dots. Density functional theory calculations reveal the rapid CO2 adsorption/activation and the decreased free energy (0.66 eV) of *COOH formation at the interface of Ag nanoparticles and g-C3N4 in contrast to the g-C3N4, leading to the excellent photocatalytic activity, while the thermodynamically favored CO desorption contributes to the high CO selectivity. This work presents an innovative strategy of constructing perovskite-based photocatalyst by modulating catalyst structure and offers profound insights for efficient CO2 conversion.
Collapse
Affiliation(s)
- Dong Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Renyi Li
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Frontiers Science Center for High Energy Material (MOE), State Key Laboratory of Explosion Science and Technology, School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yizhou Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kaixuan Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ke Fan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Institute for Energy Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Wei Guo
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Frontiers Science Center for High Energy Material (MOE), State Key Laboratory of Explosion Science and Technology, School of Physics, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
6
|
Sun D, Chen Y, Yu X, Yin Y, Tian G. Novel defect-transit dual Z-scheme heterojunction: Sulfur-doped carbon nitride nanotubes loaded with bismuth oxide and bismuth sulfide for efficient photocatalytic amine oxidation. J Colloid Interface Sci 2024; 674:225-237. [PMID: 38936079 DOI: 10.1016/j.jcis.2024.06.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The rational design of Z-scheme heterojunction hybrid photocatalysts is considered a promising way to achieve high photocatalytic activity. In this study, a dual Z-scheme heterojunction with bismuth sulfide (Bi2S3) nanorods and bismuth oxide (Bi2O3) nanoparticles anchored Sulfur-doped carbon nitride (S-CN) nanotubes (Bi2S3/S-CN/Bi2O3) is designed and fabricated through the ordinal metal ion adsorption, pyrolysis, and sulfidation processes using supramolecular rods as precursor. Compared with pristine Bi2S3, Bi2O3, and CN, the dual Z-scheme tube-shaped Bi2S3/S-CN/Bi2O3 catalyst exhibited a significantly improved photocatalytic activity in amine oxidation. The optimized Bi2S3/S-CN/Bi2O3 nanostructure exhibits a 97.6 % benzylamine conversion and 99.4 % imine selectivity within 4 h under simulated solar light irradiation. The excellent activity of Bi2S3/S-CN/Bi2O3 nanotubes can be attributed to the characteristic hollow defect band structure and efficient charge separation and transfer achieved by the dual Z-scheme charge transfer mechanism, which was systematically studied using electron spin resonance spectroscopy, Kelvin probe force microscope, and other techniques. The optimized dual Z-scheme heterojunction hybrid photocatalyst maintains the high oxidizing ability of Bi2S3 and Bi2O3 and the excellent reducing ability of CN, thereby significantly enhancing the photocatalytic activity. This research provides a facile and feasible synthesis strategy for designing dual Z-scheme heterojunctions with defect band structure to improve the photocatalytic activity.
Collapse
Affiliation(s)
- Dan Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Yajie Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Xinyan Yu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Yuejia Yin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Guohui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
7
|
Zhou X, Wang K, Wang Y, Cao Y, Wang J, Hu H, Yang G, Hou J, Ma P, Gao C, Ban C, Duan Y, Wei Z, Zhang X, Wang C, Zheng K. Schottky Junction Enhanced Photosynthesis of Hydrogen Peroxide by Ultrathin Porous Carbon Nitride Supported Ni Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11251-11262. [PMID: 38748644 DOI: 10.1021/acs.langmuir.4c01014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Artificial photosynthesis for high-value hydrogen peroxide (H2O2) through a two-electron reduction reaction is a green and sustainable strategy. However, the development of highly active H2O2 photocatalysts is impeded by severe carrier recombination, ineffective active sites, and low surface reaction efficiency. We developed a dual optimization strategy to load dense Ni nanoparticles onto ultrathin porous graphitic carbon nitride (Ni-UPGCN). In the absence and presence of sacrificial agents, Ni-UPGCN achieved H2O2 production rates of 169 and 4116 μmol g-1 h-1 with AQY (apparent quantum efficiency) at 420 nm of 3.14% and 17.71%. Forming a Schottky junction, the surface-modified Ni nanoparticles broaden the light absorption boundary and facilitate charge separation, which act as active sites, promoting O2 adsorption and reducing the formation energy of *OOH (reaction intermediate). This results in a substantial improvement in both H2O2 generation activity and selectivity. The Schottky junction of dual modulation strategy provides novel insights into the advancement of highly effective photocatalytic agents for the photosynthesis of H2O2.
Collapse
Affiliation(s)
- Xiyuan Zhou
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Kaiwen Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yang Wang
- School of Optoelectronic Engineering & CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Jiaxing Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hanwen Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guo Yang
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jixiang Hou
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Peijie Ma
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Chunlang Gao
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Chaogang Ban
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Youyu Duan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Zhen Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Xu Zhang
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Cong Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Chen M, Wu Y, Wan Q, Lin S. Theoretical Study of p-Block Metal Single-Atom-Loaded Carbon Nitride Catalyst for Photocatalytic Water Splitting. Molecules 2024; 29:2030. [PMID: 38731520 PMCID: PMC11085354 DOI: 10.3390/molecules29092030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4), recognized for its considerable potential as a heterogeneous photocatalyst in water splitting, has attracted extensive research interest. By using density functional theory (DFT) calculations, the regulatory role of p-block metal (PM) single atoms on the photocatalytic activity of g-C3N4 in overall water splitting was systematically explored. The incorporation of PM atoms (Ge, Sn and Pb) led to a reduction in the overpotentials required for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Combined with the electronic structures analysis via hybrid functional, it was found that the introduction of Ge, Sn or Pb optimizes the positions of the valence band maximum (VBM) and the conduction band minimum (CBM), providing a robust driving force for HER and ensuring substantial driving force for OER. Meanwhile, the presence of these three PMs induces the spatial separation of VBM and CBM, inhibiting the recombination of carriers. These findings have significant implications for the design and preparation of efficient photocatalysts.
Collapse
Affiliation(s)
- Mengning Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (M.C.); (Y.W.)
| | - Yidi Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (M.C.); (Y.W.)
| | - Qiang Wan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (M.C.); (Y.W.)
| |
Collapse
|
9
|
Hou S, Gao X, Lv X, Zhao Y, Yin X, Liu Y, Fang J, Yu X, Ma X, Ma T, Su D. Decade Milestone Advancement of Defect-Engineered g-C 3N 4 for Solar Catalytic Applications. NANO-MICRO LETTERS 2024; 16:70. [PMID: 38175329 PMCID: PMC10766942 DOI: 10.1007/s40820-023-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Over the past decade, graphitic carbon nitride (g-C3N4) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C3N4 is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the "all-in-one" defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultra-active coordinated environment (M-Nx, M-C2N2, M-O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra (fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C3N4 "customization", motivating more profound thinking and flourishing research outputs on g-C3N4-based photocatalysis.
Collapse
Affiliation(s)
- Shaoqi Hou
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia
| | - Xiaochun Gao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Xingyue Lv
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Yilin Zhao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Xitao Yin
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Ying Liu
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Juan Fang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xingxing Yu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hogo, Bunkyo, Tokyo, Japan
| | - Xiaoguang Ma
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Dawei Su
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia.
| |
Collapse
|
10
|
Xu Z, Chen Y, Wang B, Ran Y, Zhong J, Li M. Highly selective photocatalytic CO 2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C 3N 4. J Colloid Interface Sci 2023; 651:645-658. [PMID: 37562306 DOI: 10.1016/j.jcis.2023.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
The introduction of nitrogen vacancies into polymeric carbon nitride (PCN) has been attested to be a reliable strategy to enhance photocatalytic performance. Nitrogen vacancies were considered as active sites to promote the adsorption of target molecules and capture photoexcited electrons to inhibit the recombination of charge pairs, accelerate photoinduced electrons to participate in photocatalytic reaction. In this paper, a series of PCN with rich nitrogen vacancies were prepared by etching of chromic acid solution. Sample 20KCSCN had the highest photocatalytic performance whose evolution efficiency of CO2 to CO and CH4 can reach 3.9 and 0.5 μmol·g-1·h-1, respectively. These evolution efficiencies are 2.9 and 4 times higher than that of the PCN. Meanwhile, 20KCSCN demonstrates high CO conversion selectivity and stability. The successful introduction of nitrogen vacancies not only increases the active sites of PCN surface, but also optimizes the optical structure, which dramatically boosts the separation of photoexcited charge pairs and the reduction capacity of photogenerated electrons. The enhancement mechanism for photocatalytic CO2 reduction performance of PCN was proposed. Besides, photocatalytic H2 evolution experiments were performed on all samples to confirm the universality of PCN photocatalytic activity enhancement etched by chromic acid solution. H2 evolution rate on 20KCSCN can reach 652 μmol·g-1·h-1, which is 1.6-fold higher than that on PCN (254 μmol·g-1·h-1) after 4 h irradiation under a 300 W Xe lamp. This work offers new venue for introducing nitrogen vacancies in PCN to regulate photoexcited charge pairs transfer. The photocatalytic enhancement of CO2 reduction could be used to alleviate the serious issue of excessive CO2 emission and energy crisis.
Collapse
Affiliation(s)
- Zhengdong Xu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Yang Chen
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Binghao Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Yu Ran
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Junbo Zhong
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - Minjiao Li
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| |
Collapse
|
11
|
Liu MX, Xu L, Cai YT, Wang RJ, Gu YY, Liu YC, Zou YJ, Zhao YM, Chen J, Zhang XL. Carbon Nitride-Based siRNA Vectors with Self-Produced O 2 Effects for Targeting Combination Therapy of Liver Fibrosis via HIF-1α-Mediated TGF-β1/Smad Pathway. Adv Healthc Mater 2023; 12:e2301485. [PMID: 37463681 DOI: 10.1002/adhm.202301485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Hypoxia is an important feature, which can upregulate the hypoxia-inducible factor-1α (HIF-1α) expression and promote the activation of hepatic stellate cells (HSCs), leading to liver fibrosis. Currently, effective treatment for liver fibrosis is extremely lacking. Herein, a safe and effective method is established to downregulate the expression of HIF-1α in HSCs via targeted delivery of VA-PEG-modified CNs-based nanosheets-encapsulated (VA-PEG-CN@GQDs) HIF-1α small interfering RNA (HIF-1α-siRNA). Due to the presence of lipase in the liver, the reversible release of siRNA can be promoted to complete the transfection process. Simultaneously, VA-PEG-CN@GQD nanosheets enable trigger the water splitting process to produce O2 under near-infrared (NIR) irradiation, thereby improving the hypoxic environment of the liver fibrosis site and maximizing the downregulation of HIF-1α expression to improve the therapeutic effect, as demonstrated in liver fibrosis mice. Such combination therapy can inhibit the activation of HSCs via HIF-1α-mediated TGF-β1/Smad pathway, achieving outstanding therapeutic effects in liver fibrosis mice. In conclusion, this study proposes a novel strategy for the treatment of liver fibrosis by regulating the hypoxic environment and the expression of HIF-1α at lesion site.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Li Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yu-Ting Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Ruo-Jia Wang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Ying-Ying Gu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yan-Chao Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yu-Jin Zou
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yong-Mei Zhao
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
12
|
Wang H, Jiang J, Yu L, Peng J, Song Z, Xiong Z, Li N, Xiang K, Zou J, Hsu JP, Zhai T. Tailoring Advanced N-Defective and S-Doped g-C 3 N 4 for Photocatalytic H 2 Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301116. [PMID: 37191326 DOI: 10.1002/smll.202301116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Indexed: 05/17/2023]
Abstract
Although challenges remain, synergistic adjusting various microstructures and photo/electrochemical parameters of graphitic carbon nitride (g-C3 N4 ) in photocatalytic hydrogen evolution reaction (HER) are the keys to alleviating the energy crisis and environmental pollution. In this work, a novel nitrogen-defective and sulfur-doped g-C3 N4 (S-g-C3 N4 -D) is designed elaborately. Subsequent physical and chemical characterization proved that the developed S-g-C3 N4 -D not only displays well-defined 2D lamellar morphology with a large porosity and a high specific surface area but also has an efficient light utilization and carriers-separation and transfer. Moreover, the calculated optimal Gibbs free energy of adsorbed hydrogen (ΔGH* ) for S-g-C3 N4 -D at the S active sites is close to zero (≈0.24 eV) on the basis of first-principle density functional theory (DFT). Accordingly, the developed S-g-C3 N4 -D catalyst shows a high H2 evolution rate of 5651.5 µmol g-1 h-1 . Both DFT calculations and experimental results reveal that a memorable defective g-C3 N4 /S-doped g-C3 N4 step-scheme heterojunction is constructed between S-doped domains and N-defective domains in the structural configuration of S-g-C3 N4 -D. This work exhibits a significant guidance for the design and fabrication of high-efficiency photocatalysts.
Collapse
Affiliation(s)
- Haitao Wang
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jizhou Jiang
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Lianglang Yu
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jiahe Peng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhou Song
- Key Laboratory of Rare Mineral, Ministry of Natural Resources, Hubei Key Laboratory of Resources and Eco-environmental Geology, Geological Experimental Testing Center of Hubei Province, Wuhan, 430034, P. R. China
| | - Zhiguo Xiong
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Kun Xiang
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jing Zou
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, "National Taiwan University", Taipei, 10617, China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
13
|
Yang Z, Zhang Q, Song H, Chen X, Cui J, Sun Y, Liu L, Ye J. Partial oxidation of methane by photocatalysis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Guo Z, Tian Y, Dou G, Wang Y, He J, Song H. CoP decorated 2D/2D red phosphorus/B doped g-C 3N 4 type II heterojunction for boosted pure water splitting activity via the two-electron pathway. Catal Sci Technol 2023. [DOI: 10.1039/d3cy00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
CoP decorated 2D/2D red phosphorus/B doped g-C3N4 heterojunction enabled photocatalytic pure water splitting to produce H2 with a two-electron process.
Collapse
|
15
|
Zhao D, Wang Y, Dong CL, Meng F, Huang YC, Zhang Q, Gu L, Liu L, Shen S. Electron-Deficient Zn-N 6 Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting. NANO-MICRO LETTERS 2022; 14:223. [PMID: 36374377 PMCID: PMC9663795 DOI: 10.1007/s40820-022-00962-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 05/16/2023]
Abstract
Despite of suitable band structures for harvesting solar light and driving water redox reactions, polymeric carbon nitride (PCN) has suffered from poor charge transfer ability and sluggish surface reaction kinetics, which limit its photocatalytic activity for water splitting. Herein, atomically dispersed Zn-coordinated three-dimensional (3D) sponge-like PCN (Zn-PCN) is synthesized through a novel intermediate coordination strategy. Advanced characterizations and theoretical calculations well evidence that Zn single atoms are coordinated and stabilized on PCN in the form of Zn-N6 configuration featured with an electron-deficient state. Such an electronic configuration has been demonstrated contributive to promoted electron excitation, accelerated charge separation and transfer as well as reduced water redox barriers. Further benefited from the abundant surface active sites derived from the 3D porous structure, Zn-PCN realizes visible-light photocatalysis for overall water splitting with H2 and O2 simultaneously evolved at a stoichiometric ratio of 2:1. This work brings new insights into the design of novel single-atom photocatalysts by deepening the understanding of electronic configurations and reactive sites favorable to excellent photocatalysis for water splitting and related solar energy conversion reactions.
Collapse
Affiliation(s)
- Daming Zhao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Yiqing Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan, People's Republic of China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lan Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaohua Shen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
16
|
Liu J, Li H, Zhang J, Shen Z. Boosting the photocatalytic activation of molecular oxygen and photodegradation of tetracycline: The role of interfacial synergistic effect of cocatalyst and dopants. J Colloid Interface Sci 2022; 628:637-648. [PMID: 36027774 DOI: 10.1016/j.jcis.2022.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Utilizing reactive oxygen species (ROS), which are generated by the activation of molecular oxygen (O2) in oxidation reaction, is a promising method for pollutant degradation. However, it is limited by the commonly low efficiency of O2 activation and carrier separation. Herein, as a model system, Ag cocatalyst and Cl doping modified g-C3N4 (Ag/Cl-CN) was constructed to improve the ability of O2 activation. Results showed that Ag/Cl-CN could effectively convert more O2 into ROS than pristine g-C3N4 (CN), and individually decorated CN (Ag-CN and Cl-CN). A series of experiments and DFT calculations revealed that the deposition of Ag could promote charge separation resulting in more charges accumulated around O2 and the introduction of Cl led to a stronger adsorption capacity for O2. Therefore, due to the synergistic effect of Ag cocatalyst and Cl dopant, Ag/Cl-CN generated higher concentrations of O2- and displayed much better activity for photocatalytic degradation of tetracycline (TC) than CN, Ag-CN and Cl-CN.
Collapse
Affiliation(s)
- Jiajia Liu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hui Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jun Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhurui Shen
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Zhang S, Yang Y, Zhai Y, Wen J, Zhang M, Yu J, Lu S. A novel P-doped and NCDs loaded g-C3N4 with enhanced charges separation for photocatalytic hydrogen evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Wu B, Sun T, Liu N, Lu L, Zhang R, Shi W, Cheng P. Modulation of Z-Scheme Heterojunction Interface between Ultrathin C 3N 5 Nanosheets and Metal-Organic Framework for Boosting Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26742-26751. [PMID: 35641883 DOI: 10.1021/acsami.2c04729] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fabricating heterojunction photocatalysts for H2 production is promising for the development of clean energy. For boosting the photocatalytic activity, modulating the heterojunction interface can facilitate the electron-hole separation and solar energy utilization, but it is highly challenging in synthesis. In this work, by facilely exfoliating the bulk C3N5, ultrathin C3N5 nanosheets (N-CN) with large surface area, improved light absorption, and efficient charge transport were synthesized and further applied to the construction of NH2-UiO-66/N-CN heterojunctions. The optimized NH2-UiO-66/N-CN-2 exhibits high hydrogen evolution rate and cycling stability with Pt as the cocatalyst. Combined with the experimental results, the density functional theory calculation reveals that the high photocatalytic performance is attributed to the promoted photogenerated carrier transfer by the formation of well-contacted and stable Z-scheme heterojunction interface. This contribution renders an insight into the modulation of the heterojunction interface for enhancing the activity of MOF-based photocatalysts.
Collapse
Affiliation(s)
- Boyuan Wu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tiankai Sun
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lele Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruizhe Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|