1
|
Majola N, Jeena V. Benzylic C-H Oxidation: Recent Advances and Applications in Heterocyclic Synthesis. Molecules 2024; 29:6047. [PMID: 39770135 PMCID: PMC11678705 DOI: 10.3390/molecules29246047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Benzylic C-H oxidation to form carbonyl compounds, such as ketones, is a fundamental transformation in organic synthesis as it allows for the preparation of versatile intermediates. In this review, we highlight the synthesis of aromatic ketones via catalytic, electrochemical, and photochemical oxidation of alkylarenes using different catalysts and oxidants in the past 5 years. Additionally, we also discuss the synthesis of heterocyclic molecules using benzylic C-H oxidation as a key step. These methods can potentially be used in medicinal, synthetic, and inorganic chemistry.
Collapse
Affiliation(s)
| | - Vineet Jeena
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa;
| |
Collapse
|
2
|
Yamamoto M, Aihara T, Wachi K, Hara M, Kamata K. La 1-xSr xFeO 3-δ Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to tert-Butyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62244-62253. [PMID: 39484694 PMCID: PMC11565478 DOI: 10.1021/acsami.4c15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to tert-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe4+ such as BaFeO3-δ, SrFeO3-δ, and La1-xSrxFeO3-δ exhibited catalytic performance superior to those of other Fe3+- and Fe2+-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO3 significantly enhanced the catalytic performance and durability. In particular, the La0.8Sr0.2FeO3-δ catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO3-δ and SrFeO3-δ catalysts were almost inactive. La0.8Sr0.2FeO3-δ promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La1-xSrxFeO3-δ on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe3+/Fe4+ valence states of La1-xSrxFeO3-δ nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Masanao Yamamoto
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Takeshi Aihara
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keiju Wachi
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Michikazu Hara
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keigo Kamata
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| |
Collapse
|
3
|
Erdivan B, Calikyilmaz E, Bilgin S, Erdali AD, Gul DN, Ercan KE, Türkmen YE, Ozensoy E. Na-Promoted Bimetallic Hydroxide Nanoparticles for Aerobic C-H Activation: Catalyst Design Principles and Insights into Reaction Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60151-60165. [PMID: 39450826 PMCID: PMC11551905 DOI: 10.1021/acsami.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
A precious metal-free bimetallic FexMn1-x(OH)y hydroxide catalyst was developed that is capable of catalyzing aerobic C-H oxidation reactions at low temperatures, without the need for an initiator, relying sustainably on molecular oxygen. Through a systematic synthetic effort, we scanned a wide nanoparticle synthesis parameter space to lay out a detailed set of catalyst design principles unraveling how the Fe/Mn cation ratio, NaOH(aq) concentration used in the synthesis, catalyst washing procedures, extent of residual Na+ promoters on the catalyst surface, reaction temperature, and catalyst loading influence catalytic C-H activation performance as a function of the electronic, surface chemical, and crystal structure of FexMn1-x(OH)y bimetallic hydroxide nanostructures. Our comprehensive XRD, XPS, BET, ICP-MS, 1H NMR, and XANES structural/product characterization results as well as mechanistic kinetic isotope effect (KIE) studies provided the following valuable insights into the molecular level origins of the catalytic performance of the bimetallic FexMn1-x(OH)y hydroxide nanostructures: (i) catalytic reactivity is due to the coexistence and synergistic operation of Fe3+ and Mn3+ cationic sites (with minor contributions from Fe2+ and Mn2+ sites) on the catalyst surface, where in the absence of one of these synergistic sites (i.e., in the presence of monometallic hydroxides), catalytic activity almost entirely vanishes, (ii) residual Na+ species on the catalyst surface act as efficient electronic promoters by increasing the electron density on the Fe3+ and Mn3+ cationic sites, which in turn, presumably enhance the electrophilic adsorption of organic reactants and strengthen the interaction between molecular oxygen and the catalyst surface, (iii) in the fluorene oxidation reaction the step dictating the reaction rate likely involved the breaking of a C-H bond (kH/kD = 2.4), (iv) reactivity patterns of a variety of alkylarene substrates indicate that the C-H bond cleavage follows a stepwise PT-ET (proton transfer-electron transfer) pathway.
Collapse
Affiliation(s)
- Beyzanur Erdivan
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Eylul Calikyilmaz
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Suay Bilgin
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Ayse Dilay Erdali
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Damla Nur Gul
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Kerem Emre Ercan
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- Roketsan
Inc., Elmadag, 06780 Ankara, Türkiye
| | - Yunus Emre Türkmen
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Türkiye
| | - Emrah Ozensoy
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Türkiye
| |
Collapse
|
4
|
Kamata K, Aihara T, Wachi K. Synthesis and catalytic application of nanostructured metal oxides and phosphates. Chem Commun (Camb) 2024; 60:11483-11499. [PMID: 39282987 DOI: 10.1039/d4cc03233k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The design and development of new high-performance catalysts is one of the most important and challenging issues to achieve sustainable chemical and energy production. This Feature Article describes the synthesis of nanostructured metal oxides and phosphates mainly based on earth-abundant metals and their thermocatalytic application to selective oxidation and acid-base reactions. A simple and versatile methodology for the control of nanostructures based on crystalline complex oxides and phosphates with diverse structures and compositions is proposed as another approach to catalyst design. Herein, two unique and verstile methods for the synthesis of metal oxide and phosphate nanostructures are introduced; an amino acid-aided method for metal oxides and phosphates and a precursor crystallization method for porous manganese oxides. Nanomaterials based on perovskite oxides, manganese oxides, and metal phosphates can function as effective heterogeneous catalysts for selective aerobic oxidation, biomass conversion, direct methane conversion, one-pot synthesis, acid-base reactions, and water electrolysis. Furthermore, the structure-activity relationship is clarified based on experimental and computational approaches, and the influence of oxygen vacancy formation, concerted activation of molecules, and the redox/acid-base properties of the outermost surface are discussed. The proposed methodology for nanostructure control would be useful not only for the design and understanding of the complexity of metal oxide catalysts, but also for the development of innovative catalysts.
Collapse
Affiliation(s)
- Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| | - Keiju Wachi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| |
Collapse
|
5
|
Aihara T, Aoki W, Kiyohara S, Kumagai Y, Kamata K, Hara M. Nanosized Ti-Based Perovskite Oxides as Acid-Base Bifunctional Catalysts for Cyanosilylation of Carbonyl Compounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17957-17968. [PMID: 37010448 PMCID: PMC10103063 DOI: 10.1021/acsami.3c01629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The development of effective solid acid-base bifunctional catalysts remains a challenge because of the difficulty associated with designing and controlling their active sites. In the present study, highly pure perovskite oxide nanoparticles with d0-transition-metal cations such as Ti4+, Zr4+, and Nb5+ as B-site elements were successfully synthesized by a sol-gel method using dicarboxylic acids. Moreover, the specific surface area of SrTiO3 was increased to 46 m2 g-1 by a simple procedure of changing the atmosphere from N2 to air during calcination of an amorphous precursor. The resultant SrTiO3 nanoparticles showed the highest catalytic activity for the cyanosilylation of acetophenone with trimethylsilyl cyanide (TMSCN) among the tested catalysts not subjected to a thermal pretreatment. Various aromatic and aliphatic carbonyl compounds were efficiently converted to the corresponding cyanohydrin silyl ethers in good-to-excellent yields. The present system was applicable to a larger-scale reaction of acetophenone with TMSCN (10 mmol scale), in which 2.06 g of the analytically pure corresponding product was isolated. In this case, the reaction rate was 8.4 mmol g-1 min-1, which is the highest rate among those reported for heterogeneous catalyst systems that do not involve a pretreatment. Mechanistic studies, including studies of the catalyst effect, Fourier transform infrared spectroscopy, and temperature-programmed desorption measurements using probe molecules such as pyridine, acetophenone, CO2, and CHCl3, and the poisoning effect of pyridine and acetic acid toward the cyanosilylation, revealed that moderate-strength acid and base sites present in moderate amounts on SrTiO3 most likely enable SrTiO3 to act as a bifunctional acid-base solid catalyst through cooperative activation of carbonyl compounds and TMSCN. This bifunctional catalysis through SrTiO3 resulted in high catalytic performance even without a heat pretreatment, in sharp contrast to the performance of basic MgO and acidic TiO2 catalysts.
Collapse
Affiliation(s)
- Takeshi Aihara
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Wataru Aoki
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Shin Kiyohara
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Yu Kumagai
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Keigo Kamata
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Michikazu Hara
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
6
|
Song J, Hua M, Huang X, Ma J, Xie C, Han B. Robust Bio-derived Polyoxometalate Hybrid for Selective Aerobic Oxidation of Benzylic C(sp 3)–H Bonds. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Jinliang Song
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Manli Hua
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Huang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Xie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Koutani M, Hayashi E, Kamata K, Hara M. Synthesis and Aerobic Oxidation Catalysis of Mesoporous Todorokite-Type Manganese Oxide Nanoparticles by Crystallization of Precursors. J Am Chem Soc 2022; 144:14090-14100. [PMID: 35860845 DOI: 10.1021/jacs.2c02308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pursuit of a high surface area while maintaining high catalytic performance remains a challenge due to a trade-off relationship between these two features in some cases. In this study, mesoporous todorokite-type manganese oxide (OMS-1) nanoparticles with high specific surface areas were synthesized in one step by a new synthesis approach involving crystallization (i.e., solid-state transformation) of a precursor produced by a redox reaction between MnO4- and Mn2+ reagents. The use of a low-crystallinity precursor with small particles is essential to achieve this solid-state transformation into OMS-1 nanoparticles. The specific surface area reached up to ca. 250 m2 g-1, which is much larger than those (13-185 m2 g-1) for Mg-OMS-1 synthesized by previously reported methods including multistep synthesis or dissolution/precipitation processes. Despite ultrasmall nanoparticles, a linear correlation between the catalytic reaction rates of OMS-1 and the surface areas was observed without a trade-off relationship between particle size and catalytic performance. These OMS-1 nanoparticles exhibited the highest catalytic activity among the Mn-based catalysts tested for the oxidation of benzyl alcohol and thioanisole with molecular oxygen (O2) as the sole oxidant, including highly active β-MnO2 nanoparticles. The present OMS-1 nanomaterial could also act as a recyclable heterogeneous catalyst for the aerobic oxidation of various aromatic alcohols and sulfides under mild reaction conditions. The mechanistic studies showed that alcohol oxidation proceeds with oxygen species caused by the solid, and the high surface area of OMS-1 significantly contributes to an enhancement of the catalytic activity for aerobic oxidation.
Collapse
Affiliation(s)
- Maki Koutani
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
8
|
Yamaguchi K, Jin X, Yatabe T, Suzuki K. Development of Environmentally Friendly Dehydrogenative Oxidation Reactions Using Multifunctional Heterogeneous Catalysts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| |
Collapse
|
9
|
Ishikawa S, Ikeda T, Koutani M, Yasumura S, Amakawa K, Shimoda K, Jing Y, Toyao T, Sadakane M, Shimizu KI, Ueda W. Oxidation Catalysis over Solid-State Keggin-Type Phosphomolybdic Acid with Oxygen Defects. J Am Chem Soc 2022; 144:7693-7708. [PMID: 35438484 DOI: 10.1021/jacs.2c00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Keggin-type phosphomolybdic acid (PMo12O40), treated with pyridine (Py), forms a crystalline material (PyPMo-HT) following heat treatment under an inert gas flow at ∼420 °C. Although this material is known to have attractive catalytic properties for gas-phase oxidation, the origin of this catalytic activity requires clarification. In this study, we investigated the crystal structure of PyPMo-HT. PyPMo-HT comprises a one-dimensional array of Keggin units and pyridinium cations (HPy), with an HPy/Keggin unit ratio of ∼1.0. Two oxygen atoms were removed from the Keggin unit during crystal structure transformation, which resulted in an electron being localized on the Mo atom in close contact with the adjacent Keggin unit. Upon the introduction of molecular oxygen, electron transfer from this Mo atom resulted in the formation of an electrophilic oxygen species that bridged two Keggin units. The electrophilic oxygen species acted as a catalytically active oxygen species, as confirmed by the selective oxidation of propylene. PyPMo-HT showed excellent catalytic activity for the selective oxidation of methacrolein, with the methacrylic acid yield being superior to that obtained with PMo12O40 and comparable to that obtained with an industrial Keggin-type polyoxometalate (POM) catalyst. The oxidation catalysis observed over PyPMo-HT provides a deeper understanding of POM-based industrial catalytic processes.
Collapse
Affiliation(s)
- Satoshi Ishikawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Takuji Ikeda
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Sendai 983-8551, Japan
| | - Maki Koutani
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Kazuhiko Amakawa
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-0087, Japan
| | - Kosuke Shimoda
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8520, Japan
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8520, Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
10
|
Kamata K, Kinoshita N, Koutani M, Aono R, Hayashi E, Hara M. β-MnO 2 nanoparticles as heterogenous catalysts for aerobic oxidative transformation of alcohols to carbonyl compounds, nitriles, and amides. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01476a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-MnO2 nanoparticles exhibit high catalytic performance for the aerobic oxidation of various aromatic, allylic, and heteroaromatic alcohols and one-pot tandem oxidation of alcohols to nitriles and amides in the presence of NH3.
Collapse
Affiliation(s)
- Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-City, Kanagawa, 226-8503, Japan
| | - Nanami Kinoshita
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-City, Kanagawa, 226-8503, Japan
| | - Maki Koutani
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-City, Kanagawa, 226-8503, Japan
| | - Ryusei Aono
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-City, Kanagawa, 226-8503, Japan
| | - Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-City, Kanagawa, 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-City, Kanagawa, 226-8503, Japan
| |
Collapse
|