1
|
Sun L, Cheng Y, Liu Y, Yi C. Ytterbium modified birnessite MnO2 for improving deep oxidation of toluene. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Zhao Z, Ma S, Gao B, Bi F, Qiao R, Yang Y, Wu M, Zhang X. A systematic review of intermediates and their characterization methods in VOCs degradation by different catalytic technologies. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Zhang L, Zhu Z, Tan W, Ji J, Cai Y, Tong Q, Xiong Y, Wan H, Dong L. Thermal-Driven Optimization of the Strong Metal-Support Interaction of a Platinum-Manganese Oxide Octahedral Molecular Sieve to Promote Toluene Oxidation: Effect of the Interface Pt 2+-O v-Mn δ. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56790-56800. [PMID: 36524882 DOI: 10.1021/acsami.2c16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Strong metal-support interactions (SMSIs) have a significant effect on the performance of supported noble-metal catalysts for volatile organic compound (VOC) elimination. Herein, the strength of the SMSI of Pt/OMS-2 between Pt and the OMS-2 support is regulated by simply changing calcination temperatures, and the catalyst calcined at 300 °C (Pt/OMS-2-300) performs the best in the catalytic combustion of toluene. Through systematic structural characterizations, it is revealed that much more Pt2+-Ov-Mnδ+ species are formed in Pt/OMS-2-300, which can help facilitate the generation of more reactive oxygen species and promote lattice oxygen mobility. Moreover, the results of in situ DRIFTS experiments further confirm that abundant Pt2+-Ov-Mnδ+ species at the Pt-MnO2 interface on Pt/OMS-2-300 can better enhance the adsorption and activation of toluene, thus boosting the catalytic performance in toluene combustion. This newly developed strategy of thermal-driven regulation of the SMSI provides a novel perspective for constructing highly efficient catalysts for VOC emission control.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Zhengxuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Jiawei Ji
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, P.R. China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Qing Tong
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, P.R. China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|