1
|
Huang J, Chen J, Luo Y. Cell-Sheet Shape Transformation by Internally-Driven, Oriented Forces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416624. [PMID: 40165759 DOI: 10.1002/adma.202416624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/04/2025] [Indexed: 04/02/2025]
Abstract
During morphogenesis, cells collectively execute directional forces that drive the programmed folding and growth of the layers, forming tissues and organs. The ability to recapitulate aspects of these processes in vitro will constitute a significant leap forward in the field of tissue engineering. Free-standing, self-organizing, cell-laden matrices are fabricated using a sequential deposition approach that uses liquid crystal-templated hydrogel fibers to direct cell arrangements. The orientation of hydrogel fibers is controlled using flow or boundary cues, while their microstructures are controlled by depletion interaction and probed by scattering and microscopy. These fibers effectively direct cells embedded in a collagen matrix, creating multilayer structures through contact guidance and by leveraging steric interactions amongst the cells. In uniformly aligned cell matrices, oriented cells exert traction forces that can induce preferential contraction of the matrix. Simultaneously, the matrix densifies and develops anisotropy through cell remodeling. Such an approach can be extended to create cell arrangements with arbitrary in-plane patterns, allowing for coordinated cell forces and pre-programmed, macroscopic shape changes. This work reveals a fundamentally new path for controlled force generation, emphasizing the role of a carefully designed initial orientational field for manipulating shape transformations of reconstituted matrices.
Collapse
Affiliation(s)
- Junrou Huang
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511, USA
| | - Juan Chen
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511, USA
| | - Yimin Luo
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511, USA
| |
Collapse
|
2
|
Han JY, Kim K, Lee C, Yoon DK. Controlled Mesoscopic Growth of Polymeric Fibers Using Liquid Crystal Template. Macromol Rapid Commun 2025; 46:e2300303. [PMID: 37464964 DOI: 10.1002/marc.202300303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Orientation-controlled polymeric fiber is one of the most exciting research topics to rationalize the multifunctionality for various applications. In order to realize this goal, the growth of polymeric fibers should be controlled using various techniques like extrusion, molding, drawing, and self-assembly. Among the various candidates to fabricate the orientation-controlled polymeric fibers, the template-assisted assembly guided by a liquid crystal (LC) matrix is the most promising because the template can be manipulated easily with various methods like surface anchoring, rubbing, geometric confinement, and electric field. This review introduces the recent progress toward the directed growth of polymeric fibers using the LC template. Three representative LC-templated polymerization techniques to fabricate fibers include chemical or physical polymerization from the monomers mixed in LC matrix, patterned fibers formed from LC-templated reactive mesogens, and orientation-controlled nanofibers by infiltrating vaporized monomers between LC molecules. The orientation-controlled polymeric fibers will be used in electro-optical switching tools, tunable hydrophilic or hydrophobic surfaces, and control of phosphorescence, which can open a way to design, fabricate, and modulate nano- to micron-scale fibers with various functions on demand.
Collapse
Affiliation(s)
- Jeong Yeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kyuhwan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Zhang J, Tang W, Asilehan Z, Chen Z, Shi Q, Vergara F, Jiang J, Zhang R, Peng C. Nonreciprocal chirality conversion in spatiotemporal evolutions of nematic colloidal entanglement. SCIENCE ADVANCES 2025; 11:eads7281. [PMID: 39983003 PMCID: PMC11844734 DOI: 10.1126/sciadv.ads7281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/21/2025] [Indexed: 02/23/2025]
Abstract
In soft matter systems, there is a wealth of topological phenomena, such as singular disclination lines and nonsingular defects of skyrmions and hopfions. In a liquid crystal (LC), the topological nature of disclination lines and colloids induces chiral colloidal entanglements. How the chirality of the entanglements is deterministically created and how the chirality conversion is actuated in the disclinations with Möbius strip topology have never been explored. Here, we create colloidal entanglements with designed chirality in the nematic disclination loops with Möbius topology. An irreversible process of chirality change is revealed if we move the colloidal entanglement along the loops. A nonreciprocal chirality conversion in the dynamical colloidal entanglements is demonstrated, which is induced by the interplay between topological profiles and the geometrical curvature of the disclination loop. Colloidal entanglements in opposite chirality are templated in arbitrary shapes of disclination lines. This work opens opportunities to design smart colloidal materials.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wentao Tang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhawure Asilehan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zijun Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingtian Shi
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fernando Vergara
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Asilehan Z, Tang W, Zhang J, Chen Z, Wang R, Shi Q, Song G, Jiang J, Zhang R, Peng C. Light-driven dancing of nematic colloids in fractional skyrmions and bimerons. Nat Commun 2025; 16:1148. [PMID: 39880850 PMCID: PMC11779839 DOI: 10.1038/s41467-025-56263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Materials with full and fractional skyrmions are important for fundamental studies and can be applied as information carriers for applications in spintronics or skyrmionics. However, creation, direct optical observation and manipulation of different skyrmion textures remain challenging. Besides, how the transformation of skyrmion textures directs the dynamics of colloids is not well understood. Here, we use experiments, simulations and theory to demonstrate that fractional skyrmion and bimeron strings can be created in a nematic liquid crystal (LC) through incompatible interfaced topological patterns. Moreover, distinct topological profiles are realized in the same skyrmion string loop. The light-actuated transformations of fractional skyrmion textures in both straight and loop geometry drive colloidal assemblies to exhibit exotic dynamic behaviors. Finally, fractional skyrmions with arbitrary shapes can be used as templates for a variety of exquisite colloidal assemblies. This work provides opportunities for designing new smart material to control self-assembly and transport of colloids.
Collapse
Affiliation(s)
- Zhawure Asilehan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wentao Tang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zijun Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ruijie Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qingtian Shi
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ganlin Song
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
5
|
Jiang J, Akomolafe OI, Wang X, Asilehan Z, Tang W, Zhang J, Chen Z, Wang R, Ranabhat K, Zhang R, Peng C. Topology-driven collective dynamics of nematic colloidal entanglement. Proc Natl Acad Sci U S A 2024; 121:e2402395121. [PMID: 39231202 PMCID: PMC11406232 DOI: 10.1073/pnas.2402395121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024] Open
Abstract
Entanglement in a soft condensed matter system is enabled in the form of entangled disclination lines by using colloidal particles in nematic liquid crystals. These topological excitations are manifested as colloidal entanglement at equilibrium. How to further utilize nonequilibrium disclination lines to manipulate colloidal entanglement remains a nontrivial and challenging task. In this work, we use experiments and simulations to demonstrate the reconfigurations of nematic colloidal entanglement in light-driven spatiotemporal evolutions of disclination lines. Colloidal entanglement can sense subtle changes in the topological structures of disclination lines and realize chirality conversion. This conversion is manifested as the "domino effect" of the collective rotation of colloids in the disclination lines. By programming the topological patterns and the geometry of the disclination lines, colloidal entanglement can be assembled and split. More remarkably, a double-helix entangled structure can be formed by controlling the changes in the morphology of the disclination lines. Thus, this work will provide opportunities to program colloidal composites for smart materials and micromachines.
Collapse
Affiliation(s)
- Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | | | - Xinyu Wang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhawure Asilehan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Wentao Tang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Zijun Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Ruijie Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Kamal Ranabhat
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN38152
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| |
Collapse
|
6
|
Wang X, Jiang J, Chen J, Asilehan Z, Tang W, Peng C, Zhang R. Moiré effect enables versatile design of topological defects in nematic liquid crystals. Nat Commun 2024; 15:1655. [PMID: 38409234 PMCID: PMC10897219 DOI: 10.1038/s41467-024-45529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Recent advances in surface-patterning techniques of liquid crystals have enabled the precise creation of topological defects, which promise a variety of emergent applications. However, the manipulation and application of these defects remain limited. Here, we harness the moiré effect to engineer topological defects in patterned nematic liquid crystal cells. Specifically, we combine simulation and experiment to examine a nematic cell confined between two substrates of periodic surface anchoring patterns; by rotating one surface against the other, we observe a rich variety of highly tunable, novel topological defects. These defects are shown to guide the three-dimensional self-assembly of colloids, which can conversely impact defects by preventing the self-annihilation of loop-defects through jamming. Finally, we demonstrate that certain nematic moiré cells can engender arbitrary shapes represented by defect regions. As such, the proposed simple twist method enables the design and tuning of mesoscopic structures in liquid crystals, facilitating applications including defect-directed self-assembly, material transport, micro-reactors, photonic devices, and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Juan Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN, 38152, USA
| | - Zhawure Asilehan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wentao Tang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Shin MJ, Im SH, Kim B, Choi J, Lucia SE, Kim W, Park JG, Kim P, Chung HJ, Yoon DK. Fabrication of Scratched Nanogrooves for Highly Oriented Cell Alignment and Application as a Wound Healing Dressing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18653-18662. [PMID: 37014981 DOI: 10.1021/acsami.3c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Using improper wound care materials may cause impaired wound healing, which can involve scar formation and infection. Herein, we propose a facile method to fabricate a cell-alignment scaffold, which can effectively enhance cell growth and migration, leading to the reproduction of cellular arrangements and restoration of tissues. The principle is scratching a diamond lapping film that gives uniaxial nanotopography on substrates. Cells are seeded to follow the geometric cue via contact guidance, resulting in highly oriented cell alignment. Remarkable biocompatibility is also demonstrated by the high cell viability on various substrates. In vivo studies in a wound healing model in mice show that the scratched film supports directed cell guidance on the nanostructure, with significantly reduced wound areas and inhibition of excessive collagen deposition. Rapid recovery of the epidermis and dermis is also shown by histological analyses, suggesting the potential application of the scratching technique as an advanced wound dressing material for effective tissue regeneration.
Collapse
Affiliation(s)
- Min Jeong Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Baekman Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jieun Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Stephani Edwina Lucia
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Wantae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 Republic of Korea
| |
Collapse
|
8
|
Jiang J, Wang X, Akomolafe OI, Tang W, Asilehan Z, Ranabhat K, Zhang R, Peng C. Collective transport and reconfigurable assembly of nematic colloids by light-driven cooperative molecular reorientations. Proc Natl Acad Sci U S A 2023; 120:e2221718120. [PMID: 37040402 PMCID: PMC10119998 DOI: 10.1073/pnas.2221718120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/09/2023] [Indexed: 04/12/2023] Open
Abstract
Nanomotors in nature have inspired scientists to design synthetic molecular motors to drive the motion of microscale objects by cooperative action. Light-driven molecular motors have been synthesized, but using their cooperative reorganization to control the collective transport of colloids and to realize the reconfiguration of colloidal assembly remains a challenge. In this work, topological vortices are imprinted in the monolayers of azobenzene molecules which further interface with nematic liquid crystals (LCs). The light-driven cooperative reorientations of the azobenzene molecules induce the collective motion of LC molecules and thus the spatiotemporal evolutions of the nematic disclination networks which are defined by the controlled patterns of vortices. Continuum simulations provide physical insight into the morphology change of the disclination networks. When microcolloids are dispersed in the LC medium, the colloidal assembly is not only transported and reconfigured by the collective change of the disclination lines but also controlled by the elastic energy landscape defined by the predesigned orientational patterns. The collective transport and reconfiguration of colloidal assemblies can also be programmed by manipulating the irradiated polarization. This work opens opportunities to design programmable colloidal machines and smart composite materials.
Collapse
Affiliation(s)
- Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Xinyu Wang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong99999, China
| | | | - Wentao Tang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong99999, China
| | - Zhawure Asilehan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Kamal Ranabhat
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN38152
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong99999, China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| |
Collapse
|
9
|
Kim K, Lee C, Yoon DK. Patterned Hydrophobic Liquid Crystalline Fibers Fabricated from Defect Arrays of Reactive Mesogens via Electric Field Modulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8387-8392. [PMID: 36740776 DOI: 10.1021/acsami.2c20495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We have fabricated patterned fibers using a small-molecular-weight liquid crystal (LC) and reactive mesogens (RMs) under controlled electric fields in which defect arrays are generated depending on the electrode configuration. For this, the AC electric field with interdigitated electrodes is used to develop versatile defect structures of the LC phase. Hydrophobic LC network (LCN) fibers exhibiting porous morphologies have been made by removing the LC part after the polymerization of RM. The resulting LCN fibers show a surface tension reduction characteristic compared to the neat RM film and a sticky characteristic with the water droplet, suggesting a facile way to fabricate the hydrophobic surface that can be used in microdroplet transport.
Collapse
Affiliation(s)
- Kyuhwan Kim
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, KAIST, Daejeon34141, Republic of Korea
- Graduate School of Nanoscience and Technology and KAIST Institute for Nanocentury, KAIST, Daejeon34141, Republic of Korea
| |
Collapse
|
10
|
Chen J, Jiang J, Weber J, Gimenez-Pinto V, Peng C. Shape Morphing by Topological Patterns and Profiles in Laser-Cut Liquid Crystal Elastomer Kirigami. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4538-4548. [PMID: 36637983 DOI: 10.1021/acsami.2c20295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Programming shape changes in soft materials requires precise control of the directionality and magnitude of their mechanical response. Among ordered soft materials, liquid crystal elastomers (LCEs) exhibit remarkable and programmable shape shifting when their molecular order changes. In this work, we synthesized, remotely programmed, and modeled reversible and complex morphing in monolithic LCE kirigami encoded with predesigned topological patterns in its microstructure. We obtained a rich variety of out-of-plane shape transformations, including auxetic structures and undulating morphologies, by combining different topological microstructures and kirigami geometries. The spatiotemporal shape-shifting behaviors are well recapitulated by elastodynamics simulations, revealing that the complex shape changes arise from integrating the custom-cut geometry with local director profiles defined by topological defects inscribed in the material. Different functionalities, such as a bioinspired fluttering butterfly, a flower bud, dual-rotation light mills, and dual-mode locomotion, are further realized. Our proposed LCE kirigami with topological patterns opens opportunities for the future development of multifunctional devices for soft robotics, flexible electronics, and biomedicine.
Collapse
Affiliation(s)
- Juan Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jada Weber
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Vianney Gimenez-Pinto
- Physics and Chemistry, Department of Science, Technology and Mathematics, Lincoln University of Missouri, Jefferson City, Missouri 65101, United States
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
11
|
Active transformations of topological structures in light-driven nematic disclination networks. Proc Natl Acad Sci U S A 2022; 119:e2122226119. [PMID: 35639695 DOI: 10.1073/pnas.2122226119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceTopological defects are marvels of nature. Understanding their structures is important for their applications in, for example, directed self-assembly, sensing, and photonic devices. There is recent interest in active motion and transformation of topological defects in active nematics. In these nonequilibrium systems, however, the motion and transformation of disclinations are difficult to control, thereby hindering their applications. Here, we propose a surface-patterned system engendering periodic three-dimensional disclinations, which can be excited by light irradiation and undergo a programmable transformation between different topological states. Continuum simulations recapitulating these topological structures characterize the bending, breaking, and relinking events of the disclinations during the nonequilibrium process. Our work provides an alternative dynamic system in which active transformation of topological defects can be engineered.
Collapse
|