1
|
Wang M, Zhang G, Wang H, Wang Z, Zhou Y, Nie X, Yin BH, Song C, Guo X. Understanding and Tuning the Effects of H 2O on Catalytic CO and CO 2 Hydrogenation. Chem Rev 2024; 124:12006-12085. [PMID: 39481078 DOI: 10.1021/acs.chemrev.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Catalytic COx (CO and CO2) hydrogenation to valued chemicals is one of the promising approaches to address challenges in energy, environment, and climate change. H2O is an inevitable side product in these reactions, where its existence and effect are often ignored. In fact, H2O significantly influences the catalytic active centers, reaction mechanism, and catalytic performance, preventing us from a definitive and deep understanding on the structure-performance relationship of the authentic catalysts. It is necessary, although challenging, to clarify its effect and provide practical strategies to tune the concentration and distribution of H2O to optimize its influence. In this review, we focus on how H2O in COx hydrogenation induces the structural evolution of catalysts and assists in the catalytic processes, as well as efforts to understand the underlying mechanism. We summarize and discuss some representative tuning strategies for realizing the rapid removal or local enrichment of H2O around the catalysts, along with brief techno-economic analysis and life cycle assessment. These fundamental understandings and strategies are further extended to the reactions of CO and CO2 reduction under an external field (light, electricity, and plasma). We also present suggestions and prospects for deciphering and controlling the effect of H2O in practical applications.
Collapse
Affiliation(s)
- Mingrui Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiqun Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ben Hang Yin
- Paihau-Robinson Research Institute, the MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5010, New Zealand
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, the Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Cai Y, Wang J, Huang Z, Yu S, Hu Q, Zhou A. First-principles study of hydrogen sulfide decomposition on Sc-Ti 3C 2O 2 single-atom catalyst. J Mol Model 2024; 30:175. [PMID: 38771411 DOI: 10.1007/s00894-024-05974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
CONTEXT Hydrogen sulfide gas poses significant risks to both human health and the environment, with the potential to induce respiratory and neurological effects, and a heightened fatality risk at elevated concentrations. This article investigates the catalytic decomposition of H2S on a Sc-Ti3C2O2 single-atom catalyst(SAC) using the density functional theory-based first-principles calculation approach. Initially, the adsorption behavior of H2S on Ti3C2O2-MXene was examined, revealing weak physical adsorption between them. Subsequently, the transition metal atom Sc was introduced to the Ti3C2O2 surface, and its stability was studied, demonstrating high stability. Further exploration of H2S adsorption on Sc-Ti3C2O2 revealed direct dissociation of H2S gas molecules into HS* and H*, with HS* binding to Sc and H* binding to O on the Ti3C2O2 surface, resulting in OH groups. Using the transition state search method, the dissociation of H2S molecules on the SAC's surface was investigated, revealing a potential barrier of 2.45 eV for HS* dissociation. This indicates that the H2S molecule can be dissociated into H2 and S with the action of the Sc-Ti3C2O2 SAC. Moreover, the S atom left on the catalyst surface can aggregate to produce elemental S8, desorbing on the catalyst surface, completing the catalytic cycle. Consequently, the Sc-Ti3C2O2 SAC is poised to be an efficient catalyst for the catalytic decomposition of H2S. METHODS The Dmol3 module in Materials Studio software based on density functional theory is used in this study. The generalized gradient approximation method GGA-PBE is used for the exchange-correlation function. The complete LST/QST and the NEB methods in the Dmol3 module were used to study the minimum energy path of the dissociation of hydrogen sulfide molecules on the catalyst surface.
Collapse
Affiliation(s)
- Yixuan Cai
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, Henan Province, China
| | - Junkai Wang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, Henan Province, China.
| | - Zhenxia Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, Henan Province, China
| | - Shumin Yu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, Henan Province, China
| | - Qianku Hu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, Henan Province, China
| | - Aiguo Zhou
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, Henan Province, China
| |
Collapse
|
3
|
Nan Y, Feng C, Zhuo Y, Hu P. Co-adsorption enhancement of formaldehyde/carbon dioxide over modified hexagonal boron nitride for whole-surface capture purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120586. [PMID: 38513581 DOI: 10.1016/j.jenvman.2024.120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/20/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Simultaneous capture of formaldehyde (HCHO) and carbon dioxide (CO2) in indoor air is promising of achieving indoor-air purification. Of all potential adsorbents, hexagonal boron nitride (h-BN) is one of the most suitable species owing to facile formation of attraction points. Therefore, in this study, performances of HCHO and CO2 being adsorbed over pure/modified h-BN are systematically investigated via density functional theory (DFT) calculations. Minutely speaking, direct interaction between HCHO and CO2, single-point adsorption enhancement of HCHO over modified h-BN, co-adsorption reinforcement of HCHO/CO2 as well as relevant thermodynamic characteristics are major research contents. According to calculation results, there is relatively strong attraction between HCHO and CO2 owing to hydrogen bonds, which is in favor of co-adsorption of HCHO/CO2. As to single-adsorption of HCHO, C-doped h-BN shows better adsorption features than P-doped h-BN and C/P-doped h-BN is slightly weakened in adsorption ability due to surficial deformation caused by P atoms. For co-adsorption of HCHO/CO2, CO2 is the protagonist via formation of quasi-carbonate with the help of delocalized π-orbital electrons. Regarding effects of temperatures on adsorption strengths, they depend on interelectronic interactions among dopant atoms and finally derives from dispersion of π bonds across adsorbents. Overall, this study provides detailed mechanisms for co-capture of HCHO/CO2 to accomplish indoor-air purification.
Collapse
Affiliation(s)
- Yanli Nan
- China Southwest Architectural Design and Research Institute Corp. Ltd, Chengdu, 610041, Sichuan, PR China
| | - Chi Feng
- School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuqun Zhuo
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Pengbo Hu
- School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
4
|
Feng C, Zhuo Y, Hu P. Research on nonsteady-state adsorption and regulation towards stabler adsorption for benzene over single-wall carbon materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110431-110460. [PMID: 37789221 DOI: 10.1007/s11356-023-30047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
With the intention of separating benzene (C6H6) from indoor polluted air and collecting it in a cleaner way, it is promising of getting C6H6 adsorbed on activated carbon materials with outstanding physicochemical properties. In this study, how C6H6 is adsorbed over single-wall carbon materials and relevant adsorption processes are enhanced is thoroughly investigated via density functional theory (DFT). Especially, distinction between partial and whole effects of adsorbents on C6H6 adsorption, features of electron distribution across section of adsorption forms, and regulation mechanism of nonsteady-state adsorption for C6H6 are key points. According to calculation results, C6H6 molecules could be captured by pure single-wall carbon nanotube (CNT) through repulsive forces (quantified as 103.42 kJ/mol) from all quarters, which makes it stay in nonsteady-state adsorption forms and easily run into free state. Therefore, when external temperature increases from 0 to 300 K, molecular movement will be intense enough to help C6H6 break into another random positions instead of statistically remaining immobile. As for this problem, single-wall CNTs are modified through making defects and replacing some C atoms with N atoms, respectively. In this way, surficial electron distribution of modified adsorbents is regulated to tremendously cut down repulsive forces (quantified as 50.30 kJ/mol) and reverse nonsteady-state adsorption into near-equilibrium quasi-steady-state adsorption (single-side attraction near 100 kJ/mol). Therefore, this research would provide useful information for exploiting single-wall carbon materials as effective adsorbents of C6H6 in order to quickly achieve indoor air purification.
Collapse
Affiliation(s)
- Chi Feng
- School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, People's Republic of China
- Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yuqun Zhuo
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Pengbo Hu
- School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, People's Republic of China.
- Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
5
|
Improving the adsorption capacity of amino-modified Mg-Al LDH using a combined DFT and experiment. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|