1
|
Cho J, Turney DE, Yadav GG, Nyce M, Wygant BR, Lambert TN, Banerjee S. Use of Hydrogel Electrolyte in Zn-MnO 2 Rechargeable Batteries: Characterization of Safety, Performance, and Cu 2+ Ion Diffusion. Polymers (Basel) 2024; 16:658. [PMID: 38475339 DOI: 10.3390/polym16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Achieving commercially acceptable Zn-MnO2 rechargeable batteries depends on the reversibility of active zinc and manganese materials, and avoiding side reactions during the second electron reaction of MnO2. Typically, liquid electrolytes such as potassium hydroxide (KOH) are used for Zn-MnO2 rechargeable batteries. However, it is known that using liquid electrolytes causes the formation of electrochemically inactive materials, such as precipitation Mn3O4 or ZnMn2O4 resulting from the uncontrollable reaction of Mn3+ dissolved species with zincate ions. In this paper, hydrogel electrolytes are tested for MnO2 electrodes undergoing two-electron cycling. Improved cell safety is achieved because the hydrogel electrolyte is non-spillable, according to standards from the US Department of Transportation (DOT). The cycling of "half cells" with advanced-formulation MnO2 cathodes paired with commercial NiOOH electrodes is tested with hydrogel and a normal electrolyte, to detect changes to the zincate crossover and reaction from anode to cathode. These half cells achieved ≥700 cycles with 99% coulombic efficiency and 63% energy efficiency at C/3 rates based on the second electron capacity of MnO2. Other cycling tests with "full cells" of Zn anodes with the same MnO2 cathodes achieved ~300 cycles until reaching 50% capacity fade, a comparable performance to cells using liquid electrolyte. Electrodes dissected after cycling showed that the liquid electrolyte allowed Cu ions to migrate more than the hydrogel electrolyte. However, measurements of the Cu diffusion coefficient showed no difference between liquid and gel electrolytes; thus, it was hypothesized that the gel electrolytes reduced the occurrence of Cu short circuits by either (a) reducing electrode physical contact to the separator or (b) reducing electro-convective electrolyte transport that may be as important as diffusive transport.
Collapse
Affiliation(s)
- Jungsang Cho
- The CUNY Energy Institute, City University of New York, 160 Convent Ave, New York, NY 10031, USA
| | - Damon E Turney
- The CUNY Energy Institute, City University of New York, 160 Convent Ave, New York, NY 10031, USA
| | | | - Michael Nyce
- The CUNY Energy Institute, City University of New York, 160 Convent Ave, New York, NY 10031, USA
| | - Bryan R Wygant
- Sandia National Laboratories, Department of Photovoltaics and Materials Technology, Albuquerque, NM 87185, USA
| | - Timothy N Lambert
- Sandia National Laboratories, Department of Photovoltaics and Materials Technology, Albuquerque, NM 87185, USA
- Sandia National Laboratories, Center of Integrated Nanotechnologies, Albuquerque, NM 87185, USA
| | - Sanjoy Banerjee
- The CUNY Energy Institute, City University of New York, 160 Convent Ave, New York, NY 10031, USA
| |
Collapse
|
2
|
Akamo DO, Kumar N, Li Y, Pekol C, Li K, Goswami M, Hirschey J, LaClair TJ, Keffer DJ, Rios O, Gluesenkamp KR. Stabilization of low-cost phase change materials for thermal energy storage applications. iScience 2023; 26:107175. [PMID: 37426345 PMCID: PMC10329044 DOI: 10.1016/j.isci.2023.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Sodium sulfate decahydrate (Na2SO4.10H2O, SSD), a low-cost phase change material (PCM), can store thermal energy. However, phase separation and unstable energy storage capacity (ESC) limit its use. To address these concerns, eight polymer additives-sodium polyacrylate (SPA), carboxymethyl cellulose (CMC), Fumed silica (SiO2), potassium polyacrylate (PPA), cellulose nanofiber (CNF), hydroxyethyl cellulose (HEC), dextran sulfate sodium (DSS), and poly(sodium 4-styrenesulfonate) (PSS)-were used to explore several stabilization mechanisms. The ESC of PCMs deteriorated when thickeners, SPA, PPA, and CNF, were added. DSS-modified PCMs exhibited greater stability up to 150 cycles. Rheology measurements indicated that DSS did not impact SSD viscosity significantly during stabilization. Dynamic light scattering showed that DSS reduces SSD particle size and electrostatically suspends salt particles in a stable homogeneous solution, avoiding phase separation. This study proposes a promising method to improve the thermal stability of salt hydrate PCMs by utilizing polyelectrolyte-salt hydrate mixture for thermal energy storage applications.
Collapse
Affiliation(s)
- Damilola O. Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
- Buildings and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Navin Kumar
- Building Energy Efficiency Group, Gas Technology Institute, Des Plaines, IL 60018, USA
| | - Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100081, China
| | - Collin Pekol
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Kai Li
- Buildings and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Monojoy Goswami
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jason Hirschey
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tim J. LaClair
- Building Energy Science Group, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - David J. Keffer
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Orlando Rios
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Kyle R. Gluesenkamp
- Buildings and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
3
|
Zhang Q, Liu X, Zhu X, Wan Y, Zhong C. Interface Engineering of Zinc Electrode for Rechargeable Alkaline Zinc-Based Batteries. SMALL METHODS 2023; 7:e2201277. [PMID: 36605007 DOI: 10.1002/smtd.202201277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rechargeable aqueous zinc-based batteries have gained considerable interest because of their advantages of high theoretical capacity, being eco-friendly, and cost effectiveness. In particular, zinc-based batteries with alkaline electrolyte show great promise due to their high working voltage. However, there remain great challenges for the commercialization of the rechargeable alkaline zinc-based batteries, which are mainly impeded by the limited reversibility of the zinc electrode. The critical problems refer to the dendrites growth, electrode passivation, shape change, and side reactions, affecting discharge capacity, columbic efficiency, and cycling stability of the battery. All the issues are highly associated with the interfacial properties, including both electrons and ions transport behavior at the electrode interface. Herein, this work concentrates on the fundamental electrochemistry of the challenges in the zinc electrode and the design strategies for developing high-performance zinc electrodes with regard to optimizing the interfaces between host and active materials as well as electrode and electrolyte. In addition, potential directions for the investigation of electrodes and electrolytes for high-performance zinc-based batteries are presented, aiming at promoting the development of rechargeable alkaline zinc-based batteries.
Collapse
Affiliation(s)
- Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiangbo Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Liu X, Wang Q, Wang H, Liu J, Fan X, Zhong C, Hu W. Mesoporous Ti 4O 7 Spheres with Enhanced Zinc-Anchoring Effect for High-Performance Zinc-Nickel Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56856-56866. [PMID: 36528818 DOI: 10.1021/acsami.2c18280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Zinc-nickel batteries are promising competitors for next-generation power supply due to their benefits of high safety, high working voltage, and attractive rate performance. However, their practical applications are plagued by their poor cycling performance, stemming from uneven redistribution of zinc during cycling that results in dendrite formation and shape changes of the electrode. In this work, mesoporous Ti4O7 microspheres are prepared and are employed as additives of a zinc anode. Notably, the presence of mesopores provides abundant chemisorption sites for Zn(OH)42- ions, inhibiting severe zinc redistribution in the electrode. Moreover, due to the good electrical conductivity and mesopores that serve as ion diffusion channels, the reaction reactivity and reversibility of the zinc electrode are greatly facilitated. As a result, the fabricated zinc-nickel battery with mesoporous Ti4O7 additives (ms-Ti4O7) exhibits an enhanced discharge capacity and a significantly prolonged cycling life. Even at a current of 10 A (∼138 mA cm-2), the ms-Ti4O7-modified anode demonstrates stable operation for longer than 718 h (700 cycles) with a discharge voltage of 1.2 V, which is much longer than those of a ZnO anode (192 h, 117 cycles) and a Ti4O7-particle (p-Ti4O7)-modified battery (590 h, 443 cycles). Furthermore, due to the anchoring effect for Zn(OH)42- and the uniform electric field, the effect of mesoporous Ti4O7 on inhibiting dendrite formation and shape change of the zinc electrode is highlighted.
Collapse
Affiliation(s)
- Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Qingyu Wang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Haozhi Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| |
Collapse
|