1
|
Agrawal D, Dong G, Cai S. Enhancing Thermo-Mechanical Properties of Liquid Crystal Elastomers through Chain Entanglements. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40329598 DOI: 10.1021/acsami.5c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
In this study, we present an approach to enhance the thermo-mechanical performance of liquid crystal elastomers (LCEs) by inducing chain entanglements through mechanical kneading. This process creates a network of highly entangled polymer chains, significantly improving the mechanical properties of LCEs, over a wide range of strain rates and temperatures. Mechanical kneading also improves the actuation performance, resulting in higher actuation stresses, greater contraction, and increased tolerance to self-rupture at elevated temperatures. Chain entanglements can also serve as a crucial enabler for the fabrication of monodomain LCEs. Using entanglements as the initial cross-linking step provides sufficient elasticity to LCEs, enabling the synthesis of aligned LCEs. This work demonstrates the benefits of chain entanglements, offering a pathway for the design and fabrication of high-performance LCE-based actuators for advanced applications.
Collapse
Affiliation(s)
- Devyansh Agrawal
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Gaoweiang Dong
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Ren L, Wu D, Ma X, Li J, Zhang J, Zhang X, Yu Y, Xue P, Lv P, Shao Y, Ma P, Wei Q. Facile Integration of Bacterial Cellulose with Liquid Crystal Elastomers Enables Robust Biomimetic Helical Yarn Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411178. [PMID: 39930741 DOI: 10.1002/smll.202411178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Indexed: 03/20/2025]
Abstract
Inspired from helical structures in nature, liquid crystal elastomer (LCE) fiber actuators are developed for soft robotics and smart wearables. However, the facile development of robust LCE yarn actuators remains challenging due to the lightly cross-linked networks of LCE with the inherently poor mechanical properties. Here, the bionic helical yarn actuator is constructed through integrating the shape-morphing LCE fiber as the actuation phase and the highly ordered orientation biomass bacterial cellulose (BC) macrofibers as the reinforcement phase by a facile twisting and two-step cross-linking strategy. Thanks to the 3D nanofiber network inside BC macrofibers and biomimetic helical structure, the mechanical strength (43.9 MPa) and the creep phenomenon of the resulted yarn have been significantly improved, which are obviously better than the reported LCE fiber actuators (1.4-30.8 MPa). The designed LCE/BC helical yarn actuators demonstrate high work capacity (304.1 J kg-1) and reliable reusability. As a proof-of-concept, this work constructs micro rolling device with customizable speed, soft gripper for grasping and moving heavy objects and passive micro motor with a speed of 7.7 rad s-1. The findings of this work are expected to provide insights into the development of high-performance and durable smart yarn actuators through biomimetic engineering strategies.
Collapse
Affiliation(s)
- Lingyun Ren
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dingsheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaotao Ma
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jie Li
- Jiangsu Textiles Quality Services Inspection Testing Institute, Nanjing, 210007, P. R. China
| | - Jingli Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaocui Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Pan Xue
- Xi'an Rare Metal Materials Institute Co. Ltd, Xi'an, 710016, P. R. China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanlong Shao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Pibo Ma
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
3
|
Turriani M, Cosottini N, Fuochi N, Wiersma DS, Martella D, Parmeggiani C. Exploiting photopolymerization to modulate liquid crystalline network actuation. SOFT MATTER 2025; 21:1162-1169. [PMID: 39820659 DOI: 10.1039/d4sm01360c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Liquid Crystalline Networks (LCNs) are widely investigated to develop actuators, from soft robots to artificial muscles. Indeed, they can produce forces and movements in response to a plethora of external stimuli, showing kinetics up to the millisecond time-scale. One of the most explored preparation technique involves the photopolymerization of an aligned layer of reactive mesogens. Following this approach, side-chain polymers are widely described, while a detailed comparison of light-responsive LCNs with different architectures is not properly addressed. In this paper, two synthetic approaches are exploited leading to photoresponsive LCNs with different architectures. Mixed main-chain/side-chain LCNs are obtained in one-pot through a thiol-acrylate chain-transfer reaction, while main-chain LCNs are achieved by a two-step approach involving an aza-Michael addition followed by acrylate crosslinking. Comparison among the two materials highlighted the superior performances in terms of tension developed upon light-activation of the former one, showing muscle-like force production comparable to standard side-chain LCNs combined with the greater ability to contract from common main-chain LCNs.
Collapse
Affiliation(s)
- Marco Turriani
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Fisica e Astronomia, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy
| | - Niccolò Cosottini
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
| | - Neri Fuochi
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Chimica "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Diederik S Wiersma
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Fisica e Astronomia, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy
| | - Daniele Martella
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Chimica "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Camilla Parmeggiani
- LENS (European Laboratory for Non-Linear Spectroscopy) Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.
- Dipartimento di Chimica "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
4
|
Jiang M, Wang YE, Gu Y, Ma R, Xiong D, Walsh PJ, Mao J. Smiles-Rearrangement-Based One-Pot Synthesis of Diarylacetylenes from Benzylic Sulfones and Methyl Benzoates Mediated by LiN(SiMe 3) 2/KN(SiMe 3) 2. Org Lett 2024; 26:9710-9716. [PMID: 39499791 DOI: 10.1021/acs.orglett.4c03492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The one-pot synthesis of diphenylacetylene by the reaction of methyl benzoate with 1-(benzylsulfonyl)-3,5-di(trifluoromethyl)benzene was developed. The combination of LiN(SiMe3)2 and KN(SiMe3)2 is key to promoting the reaction. Simply combining methyl benzoate, 1-(benzylsulfonyl)-3,5-di(trifluoromethyl)benzene, LiN(SiMe3)2, and KN(SiMe3)2 can produce a variety of diaryl acetylenes (28 examples, 18-70% yields).
Collapse
Affiliation(s)
- Mingyu Jiang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Yuanyun Gu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Ruyuan Ma
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
5
|
Pekol C, Furst J, Li Y, Keum J, Harper DP. 3D Printing of Thermally Responsive Shape Memory Liquid Crystalline Epoxy Networks. ACS OMEGA 2024; 9:40801-40809. [PMID: 39371980 PMCID: PMC11447742 DOI: 10.1021/acsomega.4c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024]
Abstract
A two-component liquid crystalline epoxy network (LCEN) with shape memory behavior was developed and evaluated as a candidate material for 3D printing. The cure kinetics of the uncured material and the shape memory properties of the cured LCEN were investigated by using parallel plate rheology and dynamic mechanical analysis, respectively. A commercially available fumed silica additive was introduced to the neat, uncured material to improve the rheological properties for 3D printing. The addition of fumed silica was found to increase the yield stress, shear-thinning behavior, and toughness of the uncured epoxy ink. Polarized light microscopy, differential scanning calorimetry, and wide-angle X-ray scattering measurements between the neat and additive-modified LCEN suggested a reduction in liquid crystalline alignment in the modified LCEN, owing to interactions between crystalline domains and fumed silica, which in turn influenced the mechanical behavior. Overall, the additive was found to be successful in preserving the shape memory properties of LCEN while improving its printability.
Collapse
Affiliation(s)
- Collin Pekol
- Department
of Materials Science and Engineering, The
University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| | - Jacob Furst
- Department
of Materials Science and Engineering, The
University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| | - Yuzhan Li
- School
of Materials Science and Engineering, University
of Science and Technology, Beijing 100083, China
| | - Jong Keum
- Spallation
Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - David P. Harper
- Center
for Renewable Carbon, University of Tennessee, Knoxville, Tennessee 37996-4570, United
States
| |
Collapse
|
6
|
Xu Z, Zhu Y, Ai Y, Zhou D, Wu F, Li C, Chen L. Programmable, Self-Healable, and Photochromic Liquid Crystal Elastomers Based on Dynamic Hindered Urea Bonds for Biomimetic Flowers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400520. [PMID: 38733234 DOI: 10.1002/smll.202400520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Indexed: 05/13/2024]
Abstract
Recently, researchers have been exploring the use of dynamic covalent bonds (DCBs) in the construction of exchangeable liquid crystal elastomers (LCEs) for biomimetic actuators and devices. However, a significant challenge remains in achieving LCEs with both excellent dynamic properties and superior mechanical strength and stability. In this study, a diacrylate-functionalized monomer containing dynamic hindered urea bonds (DA-HUB) is employed to prepare exchangeable LCEs through a self-catalytic Michael addition reaction. By incorporating DA-HUB, the LCE system benefits from DCBs and hydrogen bonding, leading to materials with high mechanical strength and a range of dynamic properties such as programmability, self-healing, and recyclability. Leveraging these characteristics, bilayer LCE actuators with controlled reversible thermal deformation and outstanding dimensional stability are successfully fabricated using a simple welding method. Moreover, a biomimetic triangular plum, inspired by the blooming of flowers, is created to showcase reversible color and shape changes triggered by light and heat. This innovative approach opens new possibilities for the development of biomimetic and smart actuators and devices with multiple functionalities.
Collapse
Affiliation(s)
- Zhentian Xu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yangyang Zhu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yun Ai
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chunquan Li
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lie Chen
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
7
|
Tang C. Fundamental Aspects of Stretchable Mechanochromic Materials: Fabrication and Characterization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3980. [PMID: 39203158 PMCID: PMC11355797 DOI: 10.3390/ma17163980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024]
Abstract
Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and geometries. In this work, classes of stretchable mechanochromic materials that provide visual color changes when tension is applied, namely, dyes, polymer dispersed liquid crystals, liquid crystal elastomers, cellulose nanocrystals, photonic nanostructures, hydrogels, and hybrid systems (combinations of other classes) are reviewed. For each class, synthesis and processing, as well as the mechanism of color change are discussed. To enable materials selection across the classes, the mechanochromic sensitivity of the different classes of materials are compared. Photonic systems demonstrate high mechanochromic sensitivity (Δnm/% strain), large dynamic color range, and rapid reversibility. Further, the mechanochromic behavior can be predicted using a simple mechanical model. Photonic systems with a wide range of mechanical properties (elastic modulus) have been achieved. The addition of dyes to photonic systems has broadened the dynamic range, i.e., the strain over which there is an optical change. For applications in which irreversible color change is desired, dye-based systems or liquid crystal elastomer systems can be formulated. While many promising applications have been demonstrated, manufacturing uniform color on a large scale remains a challenge. Standardized characterization methods are needed to translate materials to practical applications. The sustainability of mechanochromic materials is also an important consideration.
Collapse
Affiliation(s)
- Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
8
|
Rešetič A. Shape programming of liquid crystal elastomers. Commun Chem 2024; 7:56. [PMID: 38485773 PMCID: PMC10940691 DOI: 10.1038/s42004-024-01141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid crystal elastomers (LCEs) are shape-morphing materials that demonstrate reversible actuation when exposed to external stimuli, such as light or heat. The actuation's complexity depends heavily on the instilled liquid crystal alignment, programmed into the material using various shape-programming processes. As an unavoidable part of LCE synthesis, these also introduce geometrical and output restrictions that dictate the final applicability. Considering LCE's future implementation in real-life applications, it is reasonable to explore these limiting factors. This review offers a brief overview of current shape-programming methods in relation to the challenges of employing LCEs as soft, shape-memory components in future devices.
Collapse
Affiliation(s)
- Andraž Rešetič
- Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Abstract
Incorporating sulfur (S) atoms into polymer main chains endows these materials with many attractive features, including a high refractive index, mechanical properties, electrochemical properties, and adhesive ability to heavy metal ions. The copolymerization involving S-containing monomers constitutes a facile method for effectively constructing S-containing polymers with diverse structures, readily tunable sequences, and topological structures. In this review, we describe the recent advances in the synthesis of S-containing polymers via copolymerization or multicomponent polymerization techniques concerning a variety of S-containing monomers, such as dithiols, carbon disulfide, carbonyl sulfide, cyclic thioanhydrides, episulfides and elemental sulfur (S8). Particularly, significant focus is paid to precise control of the main-chain sequence, stereochemistry, and topological structure for achieving high-value applications.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
10
|
Fallah-Darrehchi M, Zahedi P. Improvement of Intracellular Interactions through Liquid Crystalline Elastomer Scaffolds by the Alteration of Topology. ACS OMEGA 2023; 8:46878-46891. [PMID: 38107894 PMCID: PMC10720303 DOI: 10.1021/acsomega.3c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Preparation of inherently bioactive scaffolds has become a challenging issue owing to their complicated synthesis and nonrobust modified cell-actuating property. Liquid crystalline elastomers (LCEs), due to their combined specialties of liquid crystals and elastomers as well as their ability to respond to various kinds of stimuli, have reversibly led to the design of a new class of stimuli-responsive tissue-engineered scaffolds. In this line, in the first stage of this research work, synthesis and evaluation of acrylate-based LCE films (LCEfilm) encompassing mesogenic monomers are carried out. In the second step, the design of an affordable electrospinning technique for preparing LCE nanofibers (LCEfiber) as a problematic topic, thanks to the low molecular weight of the mesogenic chains of LCEs, is investigated. For this purpose, two approaches are considered, including (1) photo-cross-linking of electrospun LCEfiber and (2) blending LCE with poly(ε-caprolactone) (PCL) to produce morphologically stable nanofibers (PCL-LCEfiber). In the following, thermal, mechanical, and morphological evaluations show the optimized crosslinker (mol)/aliphatic spacer (mol) molar ratio of 50:50 for LCEfilm samples. On the other hand, for LCEfiber samples, the appropriate amounts of excessive mesogenic monomer and PCL/LCE (v/v) to fabricate the uniform nanofibers are determined to be 20% and 1:2, respectively. Eventually, PC12 cell compatibility and the impact of the liquid crystalline phase on the PC12 cell dynamic behavior of the samples are examined. The obtained results reveal that PC12 cells cultured on electrospun PCL-LCEfiber nanofibers with an average diameter of ∼659 nm per sample are alive and the scaffold has susceptibility for cell proliferation and actuation because of the rapid increase in cell density and number of singularity points formed in time-lapse cell imaging. Moreover, the PCL-LCEfiber nanofibrous scaffold exhibits a high performance for cell differentiation according to detailed biological evaluations such as gene expression level measurements. The time-lapse evaluation of PC12 cell flow fields confirms the significant influence of the reprogrammable liquid crystalline phase in the PCL-LCEfiber nanofibrous scaffold on topographical cue induction compared to the biodegradable PCL nanofibers.
Collapse
Affiliation(s)
- Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research
Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417613131, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research
Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417613131, Iran
| |
Collapse
|
11
|
Chychłowski MS, Kajkowska M, Jankiewicz B, Bartosewicz B, Woliński TR, Lesiak P. Photopolymerization of 1D photonic structures induced by nematic-isotropic phase transition in liquid crystal. SOFT MATTER 2023; 19:3398-3404. [PMID: 37129105 DOI: 10.1039/d3sm00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, two types of polymer-stabilized periodic structures created by photopolymerization of a nematic liquid crystal confined in a cylindrical structure are presented. Both types of structures were induced by nematic-isotropic phase transition in liquid crystal doped with gold nanoparticles. The first type of structure was created by stabilizing periodic phase separation at the nematic-isotropic phase transition temperature. As a result, a periodic structure with two distinct molecular orientations of nematic liquid crystal was achieved. The period of this structure was equal to the period induced by nematic-isotropic phase separation. The second type of structure, also related to the phase transition, was created due to an induced periodic density change of gold nanoparticles in the sample volume. Through photopolymerization it was possible to preclude the dispersion of gold nanoparticles while preserving the periodicity. An increased concentration of gold nanoparticles caused periodic defects in molecular orientation of the liquid crystal. Both types of structures were stable at room temperature. Consequently, two types of 1D photonic structures stabilized by photopolymerization are presented.
Collapse
Affiliation(s)
- Miłosz S Chychłowski
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662, Poland.
| | - Marta Kajkowska
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662, Poland.
| | - Bartłomiej Jankiewicz
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, Warsaw 00-908, Poland
| | - Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, Warsaw 00-908, Poland
| | - Tomasz R Woliński
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662, Poland.
| | - Piotr Lesiak
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662, Poland.
| |
Collapse
|
12
|
Nguyen LMT, Nguyen NKH, Dang HH, Nguyen ADS, Truong TT, Nguyen HT, Nguyen TQ, Cu ST, Le NN, Doan TCD, Nguyen LTT. Synthesis and thermal-responsive behavior of a polysiloxane-based material by combined click chemistries. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
13
|
Park M, Stricker F, Campos JG, Clark KD, Lee J, Kwon Y, Valentine MT, Read de Alaniz J. Design of Surface-Aligned Main-Chain Liquid-Crystal Networks Prepared under Ambient, Light-Free Conditions Using the Diels-Alder Cycloaddition. ACS Macro Lett 2023; 12:33-39. [PMID: 36541858 DOI: 10.1021/acsmacrolett.2c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surface-aligned liquid-crystal networks (LCNs) offer a solution for developing functional materials capable of performing a range of tasks, including actuation, shape memory, and surfaces patterning. Here we show that Diels-Alder cycloaddition can be used to prepare the backbone of planar aligned LCNs under mild ambient conditions without the addition of additives or UV irradiation. The mechanical properties of the networks have robust viscoelastic modulus and stiffness with a reversible local free volume change upon physical aging. This study shows new opportunities to design surface-aligned LCNs based on additive free step-growth Diels-Alder polymerization and enables the potential to incorporate a wider range of photochromic materials into LCNs.
Collapse
Affiliation(s)
- Minwook Park
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara 93106, California, United States
| | - Friedrich Stricker
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara 93106, California, United States
| | - Jesus Guillen Campos
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara 93106, California, United States
| | - Kyle D Clark
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara 93106, California, United States
| | - Jaejun Lee
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Younghoon Kwon
- Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara 93106, California, United States
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara 93106, California, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara 93106, California, United States
| |
Collapse
|
14
|
Zhang X, Yao L, Yan H, Zhang Y, Han D, He Y, Li C, Zhang J. Optical wavelength selective actuation of dye doped liquid crystalline elastomers by quasi-daylight. SOFT MATTER 2022; 18:9181-9196. [PMID: 36437786 DOI: 10.1039/d2sm01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We explore obtaining different photo responses of liquid crystalline elastomer (LCE) materials through modulating the optical wavelengths in order to promote the development of precise photocontrol on LCE actuators, and thus study the effect of light-absorbing dyes with different absorption bands on the selective actuation of LCE materials. The dye-doped LCEs were prepared by incorporating special visible absorber dyes into thiol-acrylate main chain LCE (MC-LCE) matrices. The dyes showed photo actuation performance to LCEs due to the photothermal effects. But, every dye-doped LCE could be effectively actuated by light irradiation whose wavelength was inside its absorption band, but could not be effectively actuated by the light whose wavelength was beyond its absorption band. Wavelength selective actuation effects, no matter actuating deformation or actuating force, could be remarkably demonstrated by these dye-doped LCEs through filtering the same quasi-daylight source to be different wavelength bands. Our work opens up a significant way for the precise and convenient photo actuation of LCE actuators, while expanding the utilization potential of quasi-daylight, and further natural sunlight.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liru Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Huixuan Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yuhe Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Dongxu Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yifan He
- Institute of Regulatory Science, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| |
Collapse
|
15
|
Yan H, He Y, Yao L, Wang X, Zhang X, Zhang Y, Han D, Li C, Sun L, Zhang J. Thermo-crosslinking assisted preparation of thiol-acrylate main-chain liquid-crystalline elastomers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zeng X, Zard SZ. A Convergent Approach to 1,3-Dithiolan-2-ones and an Unexpected Synthesis of Lactones. Org Lett 2022; 24:5245-5248. [PMID: 35861650 DOI: 10.1021/acs.orglett.2c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convergent route to 1,3-dithiolan-2-ones based on the radical addition of xanthates to allylic acetates is described. The process is modular, uses inexpensive starting materials and reagents, and is atom economical, since both sulfur atoms of the xanthate end up in the products. With adducts derived from xanthates bearing an ester group, an unexpected transformation leading to lactones was uncovered.
Collapse
Affiliation(s)
- Xianzhu Zeng
- Laboratoire de Synthèse Organique, CNRS UMR 7652 Ecole Polytechnique, 91128 Palaiseau, Cedex, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652 Ecole Polytechnique, 91128 Palaiseau, Cedex, France
| |
Collapse
|