1
|
Antony R, Li L, Santana Santos C, Limani N, Dieckhöfer S, Quast T, Weidner J, Schuhmann W. Insights of the Proton Transport Efficiency of a Membrane Electrode Assembly by Operando Monitoring of the Local Proton Concentration during Water Oxidation. ACS MATERIALS LETTERS 2024; 6:5333-5339. [PMID: 39639954 PMCID: PMC11615946 DOI: 10.1021/acsmaterialslett.4c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
Direct estimation of the reaction environment, e.g., local pH at the anode side of a membrane electrode assembly (MEA) of zero gap electrolyzer, is essential to understand possible key factors, which are influencing the sustainable operation of industrial electrolyzers. Herein, we demonstrate a scanning electrochemical microscopy-based strategy to measure the local pH in the close vicinity of an operating MEA. Local proton concentration changes during the oxygen evolution reaction were monitored in the nonzero gap electrolyzer and MEA systems. The measurements constitute a methodology to evaluate the ion transport efficiency of the MEA. The strategy was extended to investigate the effect of an activation process, buffering of the electrolyte, and poisoning effect on the change in proton transport efficiency. This novel strategy enables the estimation of the actual pH of the MEA system during operation and is of great relevance in understanding the process conditions during sustainable fuel production.
Collapse
Affiliation(s)
| | | | - Carla Santana Santos
- Analytical Chemistry—Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ndrina Limani
- Analytical Chemistry—Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry—Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry—Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Jonas Weidner
- Analytical Chemistry—Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
2
|
Kempler PA, Coridan RH, Luo L. Gas Evolution in Water Electrolysis. Chem Rev 2024; 124:10964-11007. [PMID: 39259040 DOI: 10.1021/acs.chemrev.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.
Collapse
Affiliation(s)
- Paul A Kempler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Ding L, Li K, Wang W, Xie Z, Yu S, Yu H, Cullen DA, Keane A, Ayers K, Capuano CB, Liu F, Gao PX, Zhang FY. Amorphous Iridium Oxide-Integrated Anode Electrodes with Ultrahigh Material Utilization for Hydrogen Production at Industrial Current Densities. NANO-MICRO LETTERS 2024; 16:203. [PMID: 38789605 PMCID: PMC11126398 DOI: 10.1007/s40820-024-01411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024]
Abstract
Herein, ionomer-free amorphous iridium oxide (IrOx) thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells (PEMECs) via low-cost, environmentally friendly, and easily scalable electrodeposition at room temperature. Combined with a Nafion 117 membrane, the IrOx-integrated electrode with an ultralow loading of 0.075 mg cm-2 delivers a high cell efficiency of about 90%, achieving more than 96% catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane (2 mg cm-2). Additionally, the IrOx electrode demonstrates superior performance, higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes. Notably, the remarkable performance could be mainly due to the amorphous phase property, sufficient Ir3+ content, and rich surface hydroxide groups in catalysts. Overall, due to the high activity, high cell efficiency, an economical, greatly simplified and easily scalable fabrication process, and ultrahigh material utilization, the IrOx electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
Collapse
Affiliation(s)
- Lei Ding
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kui Li
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Weitian Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhiqiang Xie
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shule Yu
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Haoran Yu
- Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - David A Cullen
- Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | | | - Fangyuan Liu
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Pu-Xian Gao
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Feng-Yuan Zhang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
4
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
5
|
Liu RT, Xu ZL, Li FM, Chen FY, Yu JY, Yan Y, Chen Y, Xia BY. Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev 2023; 52:5652-5683. [PMID: 37492961 DOI: 10.1039/d2cs00681b] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are an attractive technology for renewable energy conversion and storage. By using green electricity generated from renewable sources like wind or solar, high-purity hydrogen gas can be produced in PEMWE systems, which can be used in fuel cells and other industrial sectors. To date, significant advances have been achieved in improving the efficiency of PEMWEs through the design of stack components; however, challenges remain for their large-scale and long-term application due to high cost and durability issues in acidic conditions. In this review, we examine the latest developments in engineering PEMWE systems and assess the gap that still needs to be filled for their practical applications. We provide a comprehensive summary of the reaction mechanisms, the correlation among structure-composition-performance, manufacturing methods, system design strategies, and operation protocols of advanced PEMWEs. We also highlight the discrepancies between the critical parameters required for practical PEMWEs and those reported in the literature. Finally, we propose the potential solution to bridge the gap and enable the appreciable applications of PEMWEs. This review may provide valuable insights for research communities and industry practitioners working in these fields and facilitate the development of more cost-effective and durable PEMWE systems for a sustainable energy future.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| | - Fei-Yang Chen
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Jing-Ya Yu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| |
Collapse
|
6
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
7
|
Ding L, Wang W, Xie Z, Li K, Yu S, Capuano CB, Keane A, Ayers K, Zhang FY. Highly Porous Iridium Thin Electrodes with Low Loading and Improved Reaction Kinetics for Hydrogen Generation in PEM Electrolyzer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24284-24295. [PMID: 37167124 DOI: 10.1021/acsami.2c23304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Highly efficient electrodes with simplified fabrication and low cost are highly desired for the commercialization of proton exchange membrane electrolyzer cells (PEMECs). Herein, highly porous Ir-coated thin/tunable liquid/gas diffusion layers with honeycomb-structured catalyst layers were fabricated as anode electrodes for PEMECs via integrating a facile and fast electroplating process with efficient template removal. Combined with a Nafion 117 membrane, a low cell voltage of 1.842 V at 2000 mA/cm2 and a high mass activity of 4.16 A/mgIr at 1.7 V were achieved with a low Ir loading of 0.27 mg/cm2, outperforming most of the recently reported anode catalysts. Moreover, the thin electrode shows outstanding stability at a high current density of 1800 mA/cm2 in the practical PEMEC. Moreover, with in-situ high-speed visualizations in PEMECs, the catalyst layer structure's impact on real-time electrochemical reactions and mass transport phenomena was investigated for the first time. Increased active sites and improved multiphase transport properties with favorable bubble detachment and water diffusion for the honeycomb-structured electrode are revealed. Overall, the significantly simplified ionomer-free honeycomb thin electrode with low catalyst loading and remarkable performance could efficiently accelerate the industrial application of PEMECs.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Kui Li
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Kathy Ayers
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
8
|
Wang W, Ding L, Xie Z, Yu S, Canfield B, Bender G, Wrubel JA, Pivovar BS, Zhang FY. Discovering Reactant Supply Pathways at Electrode/PEM Reaction Interfaces Via a Tailored Interface-Visible Characterization Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207809. [PMID: 37029458 DOI: 10.1002/smll.202207809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In situ and micro-scale visualization of electrochemical reactions and multiphase transports on the interface of porous transport electrode (PTE) materials and solid polymer electrolyte (SPE) has been one of the greatest challenges for electrochemical energy conversion devices, such as proton exchange membrane electrolyzer cells (PEMECs), CO2 reduction electrolyzers, PEM fuel cells, etc. Here, an interface-visible characterization cell (IV-CC) is developed to in situ visualize micro-scaled and rapid electrochemical reactions and transports in PTE/SPE interfaces. Taking the PEMEC of a green hydrogen generator as a study case, the unanticipated local gas blockage, micro water droplets, and their evolution processes are successfully visualized on PTE/PEM interfaces in a practical PEMEC device, indicating the existence of unconventional reactant supply pathways in PEMs. Further comprehensive results reveal that PEM water supplies to reaction interfaces are significantly impacted with current densities. These results provide critical insights about the reaction interface optimization and mass transport enhancement in various electrochemical energy conversion devices.
Collapse
Affiliation(s)
- Weitian Wang
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, TN, 37388, USA
| | - Lei Ding
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, TN, 37388, USA
| | - Shule Yu
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, TN, 37388, USA
| | - Brian Canfield
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, TN, 37388, USA
| | - Guido Bender
- Chemistry & Nanoscience Department, National Renewable Energy Lab, Golden, CO, 80401, USA
| | - Jacob A Wrubel
- Chemistry & Nanoscience Department, National Renewable Energy Lab, Golden, CO, 80401, USA
| | - Bryan S Pivovar
- Chemistry & Nanoscience Department, National Renewable Energy Lab, Golden, CO, 80401, USA
| | - Feng-Yuan Zhang
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, TN, 37388, USA
| |
Collapse
|
9
|
Li K, Ding L, Xie Z, Yang G, Yu S, Wang W, Cullen DA, Meyer HM, Hu G, Ganesh P, Watkins TR, Zhang FY. Robust Copper-Based Nanosponge Architecture Decorated by Ruthenium with Enhanced Electrocatalytic Performance for Ambient Nitrogen Reduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11703-11712. [PMID: 36812428 DOI: 10.1021/acsami.2c20809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrochemical conversion of nitrogen to green ammonia is an attractive alternative to the Haber-Bosch process. However, it is currently bottlenecked by the lack of highly efficient electrocatalysts to drive the sluggish nitrogen reduction reaction (N2RR). Herein, we strategically design a cost-effective bimetallic Ru-Cu mixture catalyst in a nanosponge (NS) architecture via a rapid and facile method. The porous NS mixture catalysts exhibit a large electrochemical active surface area and enhanced specific activity arising from the charge redistribution for improved activation and adsorption of the activated nitrogen species. Benefiting from the synergistic effect of the Cu constituent on morphology decoration and thermodynamic suppression of the competing hydrogen evolution reaction, the optimized Ru0.15Cu0.85 NS catalyst presents an impressive N2RR performance with an ammonia yield rate of 26.25 μg h-1 mgcat.-1 (corresponding to 10.5 μg h-1 cm-2) and Faradic efficiency of 4.39% as well as superior stability in alkaline medium, which was superior to that of monometallic Ru and Cu nanostructures. Additionally, this work develops a new bimetallic combination of Ru and Cu, which promotes the strategy to design efficient electrocatalysts for electrochemical ammonia production under ambient conditions.
Collapse
Affiliation(s)
- Kui Li
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Gaoqiang Yang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - David A Cullen
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Harry M Meyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Guoxiang Hu
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Thomas R Watkins
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
10
|
Dong Z, Wu X, Chen M, Chen H, Huang KJ, Wang L, Xu J. Self-supporting 1T-MoS2@WS2@CC composite materials for potential high-capacity sodium storage system. J Colloid Interface Sci 2023; 630:426-435. [DOI: 10.1016/j.jcis.2022.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
11
|
Kang Z, Fan Z, Zhang F, Zhang Z, Tian C, Wang W, Li J, Shen Y, Tian X. Studying Performance and Kinetic Differences between Various Anode Electrodes in Proton Exchange Membrane Water Electrolysis Cell. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7209. [PMID: 36295277 PMCID: PMC9607557 DOI: 10.3390/ma15207209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The electrode, as one of the most critical components in a proton exchange membrane water electrolysis (PEMWE) cell for hydrogen production, has a significant impact on cell performance. Electrodes that are fabricated via various techniques may exhibit different morphologies or properties, which might change the kinetics and resistances of the PEMWE. In this study, we have successfully fabricated several electrodes by different techniques, and the effects of electrode coating methods (ultrasonic spray, blade coating, and rod coating), hot press, and decal transfer processes are comprehensively investigated. The performance differences between various electrodes are due to kinetic or high frequency resistance changes, while the influences are not significant, with the biggest deviation of about 26 mV at 2.0 A cm-2. In addition, the effects of catalyst ink compositions, including ionomer to catalyst ratio (0.1 to 0.3), water to alcohol ratio (1:1 to 3:1), and catalyst weight percentage (10% to 30%), are also studied, and the electrodes' performance variations are less than 10 mV at 2.0 A cm-2. The results show that the PEMWE electrode has superior compatibility and redundancy, which demonstrates the high flexibility of the electrode and its applicability for large-scale manufacturing.
Collapse
Affiliation(s)
- Zhenye Kang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Zihao Fan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Fan Zhang
- Hainan New Energy Investment Co., Ltd., State Power Investment Corporation, Limited (Hainan), Haikou 570100, China
| | - Zhenyu Zhang
- Hainan New Energy Investment Co., Ltd., State Power Investment Corporation, Limited (Hainan), Haikou 570100, China
| | - Chao Tian
- Hainan New Energy Investment Co., Ltd., State Power Investment Corporation, Limited (Hainan), Haikou 570100, China
| | - Weina Wang
- Hainan New Energy Investment Co., Ltd., State Power Investment Corporation, Limited (Hainan), Haikou 570100, China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Kang Z, Schuler T, Chen Y, Wang M, Zhang FY, Bender G. Effects of interfacial contact under different operating conditions in proton exchange membrane water electrolysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|