1
|
Cheng Y, Wang Y, Chen B, Han X, He F, He C, Hu W, Zhou G, Zhao N. Routes to Bidirectional Cathodes for Reversible Aprotic Alkali Metal-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410704. [PMID: 39308193 DOI: 10.1002/adma.202410704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Indexed: 11/16/2024]
Abstract
Aprotic alkali metal-CO2 batteries (AAMCBs) have garnered significant interest owing to fixing CO2 and providing large energy storage capacity. The practical implementation of AAMCBs is constrained by the sluggish kinetics of the CO2 reduction reaction (CO2RR) and the CO2 evolution reaction (CO2ER). Because the CO2ER and CO2RR take place on the cathode, which connects the internal catalyst with the external environment. Building a bidirectional cathode with excellent CO2ER and CO2RR kinetics by optimizing the cathode's internal catalyst and environment has attracted most of the attention to improving the electrochemical performance of AAMCBs. However, there remains a lack of comprehensive understanding. This review aims to give a route to bidirectional cathodes for reversible AAMCBs, by systematically discussing engineering strategies of both the internal catalyst (atomic, nanoscopic, and macroscopic levels) and the external environment (photo, photo-thermal, and force field). The CO2ER and CO2RR mechanisms and the "engineering strategies from internal catalyst to the external environment-cathode properties-CO2RR and CO2ER kinetics and mechanisms-batteries performance" relationship are elucidated by combining computational and experimental approaches. This review establishes a fundamental understanding for designing bidirectional cathodes and gives a route for developing reversible AAMCBs and similar metal-gas battery systems.
Collapse
Affiliation(s)
- Yihao Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yuxuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| |
Collapse
|
2
|
Xu C, Hong P, Dong Y, Li Y, Shen Y, Biskupek J, Zhao H, Kaiser U, Shao G, Lei Y. Multiscale Defective Interfaces for Realizing Na-CO 2 Batteries With Ultralong Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409533. [PMID: 39380404 PMCID: PMC11602679 DOI: 10.1002/adma.202409533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Despite their favorable high energy density and potential for CO2 recycling, Na-CO2 batteries have been held back by limitations in cycling capability, stemming from the sluggish CO2 reduction/evolution reaction (CO2RR/CO2ER) kinetics at CO2 cathode and unmanageable deposition/stripping of metallic Na at the anode upon cycling. Herein, a "two-in-one" electrode with multiscale defective FeCu interfaces (CP@FeCu) is presented, which is capable of improving the CO2RR/CO2ER kinetics of CO2-breathing cathode, while modulating sodium deposition behavior. Experimental and theoretical investigations reveal multiscale defective FeCu interfaces are responsible for the enhancement of sodiophilicity and catalytic properties. The defect and valence oscillation effects originate in multiscale defective FeCu interfaces, effectively facilitating the adsorption of reactants and decomposition of Na2CO3 during CO2RR/CO2ER processes, along with exceptional cycling stability of 2400 cycles (4800 h) at 5 µA cm-2. Meanwhile, the CP@FeCu with sodium affinity creates a uniform electric field and robust adsorption for Na, making initial nucleation sites more conducive to Na deposition and achieving dendrite-resistant and durable anodes. This work offers a scientific insight into the functionalization design of "two-in-one" electrodes, which is essential for a unified solution to the challenges in sodium anodes and CO2 cathodes.
Collapse
Affiliation(s)
- Changfan Xu
- Fachgebiet Angewandte NanophysikInstitut für Physik & IMN MacroNanoTechnische Universität Ilmenau98693IlmenauGermany
| | - Ping Hong
- Fachgebiet Angewandte NanophysikInstitut für Physik & IMN MacroNanoTechnische Universität Ilmenau98693IlmenauGermany
| | - Yulian Dong
- Fachgebiet Angewandte NanophysikInstitut für Physik & IMN MacroNanoTechnische Universität Ilmenau98693IlmenauGermany
| | - Yueliang Li
- Central Facility for Electron MicroscopyElectron Microscopy Group of Materials ScienceUlm University89081UlmGermany
| | - Yonglong Shen
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Johannes Biskupek
- Central Facility for Electron MicroscopyElectron Microscopy Group of Materials ScienceUlm University89081UlmGermany
| | - Huaping Zhao
- Fachgebiet Angewandte NanophysikInstitut für Physik & IMN MacroNanoTechnische Universität Ilmenau98693IlmenauGermany
| | - Ute Kaiser
- Central Facility for Electron MicroscopyElectron Microscopy Group of Materials ScienceUlm University89081UlmGermany
| | - Guosheng Shao
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Yong Lei
- Fachgebiet Angewandte NanophysikInstitut für Physik & IMN MacroNanoTechnische Universität Ilmenau98693IlmenauGermany
| |
Collapse
|
3
|
Yu W, Cui B, Han J, Zhu S, Xu X, Tan J, Xu Q, Min Y, Peng Y, Liu H, Wang Y. In Situ Encapsulation of SnS 2/MoS 2 Heterojunctions by Amphiphilic Graphene for High-Energy and Ultrastable Lithium-Ion Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405135. [PMID: 39049722 PMCID: PMC11423093 DOI: 10.1002/advs.202405135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Lithium-ion batteries with transition metal sulfides (TMSs) anodes promise a high capacity, abundant resources, and environmental friendliness, yet they suffer from fast degradation and low Coulombic efficiency. Here, a heterostructured bimetallic TMS anode is fabricated by in situ encapsulating SnS2/MoS2 nanoparticles within an amphiphilic hollow double-graphene sheet (DGS). The hierarchically porous DGS consists of inner hydrophilic graphene and outer hydrophobic graphene, which can accelerate electron/ion migration and strongly hold the integrity of alloy microparticles during expansion and/or shrinkage. Moreover, catalytic Mo converted from lithiated MoS2 can promote the reaction kinetics and suppress heterointerface passivation by forming a building-in-electric field, thereby enhancing the reversible conversion of Sn to SnS2. Consequently, the SnS2/MoS2/DGS anode with high gravimetric and high volumetric capacities achieves 200 cycles with a high initial Coulombic efficiency of >90%, as well as excellent low-temperature performance. When the commercial Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode is paired with the prelithiated SnS2/MoS2/DGS anode, the full cells deliver high gravimetric and volumetric energy densities of 577 Wh kg-1 and 853 Wh L-1, respectively. This work highlights the significance of integrating spatial confinement and atomic heterointerface engineering to solve the shortcomings of conversion-/alloying typed TMS-based anodes to construct outstanding high-energy LIBs.
Collapse
Affiliation(s)
- Wenjun Yu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Baitao Cui
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Jianming Han
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - ShaSha Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xinhao Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Junxin Tan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yiting Peng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Haimei Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China
| |
Collapse
|
4
|
Fang Y, Zheng W, Hu T, Xiao H, Li L, Yuan W. An Ultrahigh-Capacity Dual-Ion Battery Based on a Free-Standing Graphite Paper Cathode and Flower-Like Heterojunction Anode of Tin Disulfide and Molybdenum Disulfide. CHEMSUSCHEM 2024; 17:e202301093. [PMID: 37620728 DOI: 10.1002/cssc.202301093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Dual-ion batteries have been considered as a competitive energy-storage device. However, owing to the lack of suitable high-capacity density and rapid-charging electrode materials, designing a cost-effective and high-performance dual-ion battery is still a great challenge. Herein, an ultrahigh-capacity dual-ion battery is constructed based on a carbon-nanotubes (CNTs) containing SnS2 -MoS2 @CNTs heterojunction anode and highly crystalline free-standing graphite paper serves as cathode. The SnS2 -MoS2 @CNTs heterojunction consisting of ultrathin nanosheets was prepared via a facile two-step hydrothermal method and shows flower-like morphology and high crystallinity. Benefiting from the unique design concept, the graphite paper/SnS2 -MoS2 @CNTs dual-ion battery delivers a high capacity of 274.2 mAh g-1 at 100 mA g-1 and has an outstanding capacity retention of 95 % after 300 cycles under 400 mA g-1 . Even at a high current density of 2 A g-1 the battery still retains a considerable capacity of 112.3 mAh g-1 . More importantly, the battery shows an extremely low self-discharge of 0.006 % h-1 after resting for 24 h. Characterization using SEM and XRD further demonstrate the excellent cycling stability and good reversibility. Consequently, this constructed dual-ion battery could be a promising energy storage device and provide new insights for the design of high-performance dual-ion batteries.
Collapse
Affiliation(s)
- Yaobing Fang
- Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175, P.R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Wen Zheng
- Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175, P.R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Tao Hu
- Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175, P.R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Hong Xiao
- Shenzhen Sez Construction Group CO.LTD, Shenzhen, 518034, P.R. China
| | - Li Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Wenhui Yuan
- Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175, P.R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| |
Collapse
|
5
|
Xu C, Dong Y, Shen Y, Zhao H, Li L, Shao G, Lei Y. Fundamental Understanding of Nonaqueous and Hybrid Na-CO 2 Batteries: Challenges and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206445. [PMID: 36609796 DOI: 10.1002/smll.202206445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Alkali metal-CO2 batteries, which combine CO2 recycling with energy conversion and storage, are a promising way to address the energy crisis and global warming. Unfortunately, the limited cycle life, poor reversibility, and low energy efficiency of these batteries have hindered their commercialization. Li-CO2 battery systems have been intensively researched in these aspects over the past few years, however, the exploration of Na-CO2 batteries is still in its infancy. To improve the development of Na-CO2 batteries, one must have a full picture of the chemistry and electrochemistry controlling the operation of Na-CO2 batteries and a full understanding of the correlation between cell configurations and functionality therein. Here, recent advances in CO2 chemical and electrochemical mechanisms on nonaqueous Na-CO2 batteries and hybrid Na-CO2 batteries (including O2 -involved Na-O2 /CO2 batteries) are reviewed in-depth and comprehensively. Following this, the primary issues and challenges in various battery components are identified, and the design strategies for the interfacial structure of Na anodes, electrolyte properties, and cathode materials are explored, along with the correlations between cell configurations, functional materials, and comprehensive performances are established. Finally, the prospects and directions for rationally constructing Na-CO2 battery materials are foreseen.
Collapse
Affiliation(s)
- Changfan Xu
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Yulian Dong
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Yonglong Shen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Guosheng Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| |
Collapse
|