1
|
Ye AL, Zhang H, Wu B, Lu H, Si M, Zhang K, Chen T. Hydrogel Rivet with Unidirectional Shape Morphing for Flexible Mechanical Assembly. Macromol Rapid Commun 2024; 45:e2300586. [PMID: 37972640 DOI: 10.1002/marc.202300586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Integrating diverse materials and functions into highly additive produce has piqued global interest due to the increasing demands of intelligent soft robotics. Nevertheless, existing assembly techniques, especially supramolecular assembly which heavily rely on precise chemical design and specific recognition, may prove inadequate when confronted with diverse external demands. Inspired by the traditional mechanical assembly, rivet connection, herein, a thermo-responsive hydrogel with unidirectional shape-morphing is fabricated and a stable mechanical assembly is constructed by emulating the rivet connection mechanism. This system employed poly(acrylamide-co-acrylic acid) [P(AAm-co-AAc)] to induce continuous swelling and hexylamine-modified polyvinyl alcohol (PVA-C6) as a molecular switch to control the swelling process. The hydrogel rivet, initially threaded through pre-fabricated hollows in two components. Subsequently, upon the disassociation of alkane chains the molecular switch would activate, inducing swelling and stable mechanical assembly via anchor structures. Moreover, to enhance the assembly strength, knots are introduced to enhance assembly strength, guiding localized stress release for programmed deformations. Additionally, the system can be remotely controlled using near-infrared light (NIR) by incorporating photo-thermal nanoparticles. This work presents a universal and efficient strategy for constructing stable mechanical assemblies without compromising overall softness, offering significant potential for the fabrication of integrated soft robots.
Collapse
Affiliation(s)
- April L Ye
- Ningbo Hanvos Kent School, Ningbo, 315200, China
- Georgia School Ningbo, Ningbo, 315000, China
| | - Haozhe Zhang
- Ningbo Hanvos Kent School, Ningbo, 315200, China
| | - Baoyi Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Huanhuan Lu
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo, 315800, China
| | - Muqing Si
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Kaihang Zhang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
2
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
3
|
Li M, Lu H, Wang X, Wang Z, Pi M, Cui W, Ran R. Regulable Mixed-Solvent-Induced Phase Separation in Hydrogels for Information Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205359. [PMID: 36333111 DOI: 10.1002/smll.202205359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The rapid progress of information technology is accompanied by plenty of information embezzlement and forgery, but developing advanced encryption technologies to ensure information security remains challenging. Phase separation commonly leads to a dramatic change in the transmittance of hydrophilic polymer networks, which is a potential method for information security but is often neglected. Here, taking the polyacrylamide (PAAm) hydrogel system as a typical example, facilely adjustable information encryption and decryption via its regulable phase separation process in ethanol/water mixed solvent, are reported. By controlling the osmotic pressure of the external and internal environment, it is demonstrated that the diffusion coefficient during deswelling and reswelling, as well as the corresponding change of transmittance of the gel, can be well controlled. Relatively high osmotic pressure leads to rapid phase separation of the initial gel but slow phase remixing of the phase-separated gel, opening the opportunity of applying the gel as a reversible information encryption device. As proof-of-concept demonstrations, several stable and reversible information encryption and decryption systems by making use of the phase separation process of the gels are designed, which are expected to inspire the development of next-generation soft devices for information technology.
Collapse
Affiliation(s)
- Min Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Honglang Lu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaoyu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhisen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Menghan Pi
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Cui
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Rong Ran
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
4
|
Liu Y, Shen J, Dong Y, Zhu L, Li C, Wang D, Huang W. Data storage and encryption with a high security level based on molecular configurational isomers. SOFT MATTER 2022; 18:6599-6606. [PMID: 35997044 DOI: 10.1039/d2sm00890d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing advanced materials for highly secure data-encryption is crucial but very challenging, as most data-encryption materials (the message area) are chemically different from the substrates (the background) on which they are being written, leading to high risks of data leakage by deciphering via sophisticated instrumental analysis. Additionally, most materials require only one stimulus for decryption, resulting in a low-level of data-security. Here, a three configurational isomer-based data-encryption method is developed (i.e., propylamine, isopropylamine, and cyclopropylamine). Their similar molecular formulae, elemental constitution, and physiochemical properties make them ideal date-encryption materials. On the other hand, the significant differences in lower critical solution temperatures (LCST) of the corresponding polyacrylamides, i.e., 10 °C for poly(N-propylacrylamide), 32 °C for poly(N-isopropylacrylamide), and 53 °C for poly(N-cyclopropylacrylamide), respectively, render an effective method for data decryption. Relying on the above features, the data written by three isomers are well-hidden under given conditions. And a specific temperature range, rather than a simple temperature increase or decrease, would be required for decryption. Furthermore, undesired temperatures give wrong outputs, which is highly deceptive to the hacker. Therefore, a high-level of data security can be achieved. This result opens a new door for designing advanced materials for improving the data-security level.
Collapse
Affiliation(s)
- Yang Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, Fujian, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lijuan Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
| | - Caicong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
| | - Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiguo Huang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350002, Fujian, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|