1
|
Li Q, Liu F, Zhang S, Xu Y, Guo Y, Liu Y. Layered dual-metal nodes metal organic frameworks artificial nanozymes boost the production of reactive oxygen species for antibacterial of drug-resistant bacteria. J Colloid Interface Sci 2025; 693:137608. [PMID: 40262206 DOI: 10.1016/j.jcis.2025.137608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
The overuse of antibiotics result drug resistance in bacterial pathogens, imposing significant healthcare challenges and socioeconomic costs. Developing artificial nanozymes is one of the promising candidates for the substitution of antibiotics for the purpose of antibacterial of drug-resistant bacteria, but it still remains a huge challenge. Herein, we report a new class of layered dual-metal nodes metal-organic frameworks (MOF) (SrCa-MOF) for promoting the photosynthesis of reactive oxygen species (ROS), significantly enhancing the antibacterial activity relative to traditional single-metal nodes MOFs nanozymes. Density functional theory (DFT) simulations demonstrate that the introduction of Ca metal decreases the d-band center of SrCa-MOF (-2.15 eV), which can promote the production of ROS for enhancing the antibacterial. The as-made SrCa-MOF shows excellent antibacterial activity of 78.16 % and 79.83 % for Methicillin-Resistant Staphylococcus aureus (MRS. aureus) and Escherichia coli (E. coli), which are 2-fold higher than that of Sr-MOF (single Sr nodes metal-organic frameworks). In vivo experiments display that SrCa-MOF possesses efficient wound healing rate of 95.05 % within 8 days, significantly higher than Sr-MOF (70.21 %). Overall, our work provides a new strategy for enhancing the antibacterial performance of MOF nanozymes and opens new avenues for the development of highly efficient artificial nanozymes.
Collapse
Affiliation(s)
- Qinqin Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fangyong Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yachao Xu
- School of Materials Science and Engineering, Peking University, Beijing 100871, PR China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| | - Youxing Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
Hussain M, Ahmad Z, Ejeromedoghene O, Shehzad K, Akhtar M, Fu G. Hybrid polysaccharide film infused with polyoxometalates for inkless printing and solar ultraviolet sensing. Int J Biol Macromol 2025; 293:139308. [PMID: 39753166 DOI: 10.1016/j.ijbiomac.2024.139308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/22/2025]
Abstract
Inkless paper made from photochromic materials has garnered significant interest owing to its potential to reduce both ink and paper pollution during production. In this research, we synthesized a dual-material film (EC-PVP/PGMEA/PMoA) and conducted a detailed investigation of its photochromic response to visible light and its microstructural properties. Initially, the film appeared as a translucent yellow, but upon exposure to visible light, it shifted to blue with a maximum absorption peak of 2.04 a.u. The film returned to its stable yellow state either by heating at 100 °C for 1 h or by being kept in the dark at RT conditions for 20 days, aided by PGMEA. The film's hydrophobicity decreased, attributed to PEG, and its hydrophilicity was confirmed by a reduction in water contact angle from 69.9° to 37.8°. XPS and ESR analyses revealed a Mo5+ ratio of 0.42 and a signal at g = 2.017, indicating proton transfer and photo reductive interactions between PMoA particles and the EC-PVP/PGMEA matrix. This innovative study underscores the hybrid film's potential for applications in inkless printing and UV solar detection.
Collapse
Affiliation(s)
- Muzammal Hussain
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Zaheer Ahmad
- Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt 47040, Pakistan
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, Jiangsu Province, PR China
| | - Khurram Shehzad
- School of Chemistry and Chemical Engineering, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Akhtar
- School of Transportation Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211100, PR China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China.
| |
Collapse
|
3
|
Chen S, Yang Q, Shen X, Cheng F, Liu JJ. Naphthalenediimide-Based Hybrid Material with Eu-Substituted Polyoxometalate: Photochromism, Near-Infrared Photothermal Conversion, and C-3 Functionalization of Indoles. Inorg Chem 2025; 64:3008-3016. [PMID: 39916503 DOI: 10.1021/acs.inorgchem.4c05331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Designing and developing novel photochromic materials with additional functions such as photothermal conversion and photocatalysis are challenging but meaningful objectives. Crystalline naphthalenediimide (NDI)-based hybrids are an attractive class of multifunctional materials with fast-response photoinduced electron transfer and charge separation properties. They are promising photothermal conversion materials and photocatalysts. Herein, a novel hybrid material, EuPMo11O39(L)1.5(H2O)2]·DMA (EuMo-NDI) (L = N,N'-di(1-oxido-4-pyridyl)-1,4,5,8-naphthalenediimide), was prepared with a solvothermal method, integrating a photoactive NDI derivative and an Eu-substituted polyoxometalate. EuMo-NDI exhibits 0D structure with sensitive photochromic behavior under UV-vis light irradiation due to fast-response photoinduced electron transfer between its components. The colored EuMo-NDI sample demonstrated efficient near-infrared photothermal conversion due to the strong absorption of the photogenerated radical anion NDI•- and mixed valence heteropoly blue in the near-infrared region. Meanwhile, EuMo-NDI is easily excited in the presence of electron donors to form the radical species, which can activate inert O2 to superoxide radical O2•-. EuMo-NDI exhibited high photocatalytic activity for C-3 thiocyanation of indoles under mild conditions using white light as a driving force. This work provides an effective avenue to design novel photothermal conversion materials and photocatalysts using photochromic materials as platforms.
Collapse
Affiliation(s)
- Silang Chen
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunmin 650504, China
| | - Qiuting Yang
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunmin 650504, China
| | - Xiang Shen
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China
| | - Feixiang Cheng
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China
| | - Jian-Jun Liu
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
4
|
Chen Y, Gong T, Han Q, Liu J, Chen L, Zhao J. Photochromic Film Based on a Mixed-Heteroatom-Templated Er III-Incorporated Polyoxometalate Used for Inkless Prints and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1682-1693. [PMID: 39720883 DOI: 10.1021/acsami.4c19437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Photochromic films have attracted increasing attention for their potential in information storage and photoswitchable devices. Developing novel photochromic materials is still a highly challenging topic. In this work, we successfully obtained an unprecedented mixed-heteroatom-templated ErIII-incorporated polyoxometalate [H2N(CH3)2]18Na2K2H12{Er2(H2O)10W14O43[SeTeW15O54][B-α-TeW9O33]2}2·117H2O (1) by concurrently introducing the [TeO3]2- and [SeO3]2- heteroanion templates into the Er3+/WO42- system. The most attractive feature is that this polyoxoanion of 1 consists of three kinds of polyoxometalate building units such as classical trivacant Keggin [B-α-TeW9O33]8-, rarely seen trivacant TeIV-SeIV-oriented Dawson-like [SeTeW15O54]10-, and extraordinary [W14O43]2- with an infrequent [WVIO7(WVI5O20)]18- pentagon subunit. Based on the photochromism feature of polyoxometalates in the presence of organic electron donors under light irradiation, a photochromic composite film GEL/TEG/1 was fabricated by mixing 1 with gelatin (GEL) and triethylene glycol (TEG). The GEL/TEG/1 film shows good photochromic properties under 365 nm UV irradiation. The film changed color within 15 min under UV irradiation. The photochromic properties endow the film with fast and easy "'printing'" performance. The "printed" text or pattern in the film can be erased within 35 h in an atmospheric environment at room temperature, or colored film can be quickly erased within 3 h at 60 °C and the film can be reused for printing again. Moreover, the coloration and decoloration process can be repeated for at least 10 cycles, indicating that the GEL/TEG/1 film possesses favorable cycle performance. Further, the GEL/TEG/1 film can be used for ink-free printing and anti-counterfeiting encryption. This work not only offers a workable method for constructing mixed-heteroatom-templated polyoxometalates containing different kinds of uncommon building units but also offers some significant insights into the photochromic potential applications of polyoxometalate-based materials.
Collapse
Affiliation(s)
- Yanan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiancai Liu
- School of Energy Science and Technology, Henan University, Zhengzhou, Henan 450046, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
5
|
He C, Dai W, Zhao Y, Liu JJ. Heterogeneous photocatalytic organic transformation using crystalline naphthalenediimide/perylenediimide-based hybrid materials. Dalton Trans 2024; 54:15-37. [PMID: 39584571 DOI: 10.1039/d4dt02350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The use of light energy to drive photocatalytic organic transformations for the production of high-value-added organic compounds has garnered growing interest as a sustainable strategy for solving environmental problems and addressing the energy crisis. Naphthalenediimide (NDI) and perylenediimide (PDI)-based hybrid materials are highly regarded photocatalysts due to their strong visible-light absorption properties, highly electron-deficient aromatic cores, excellent redox activity, and tunable electrochemical and photochemical properties. However, although the design and preparation of NDI/PDI-based hybrid materials have progressed in the past few years, their application in photocatalytic organic reactions remains in the initial stage. This review highlights the recent research progress in NDI/PDI-based hybrid materials and their crystalline composites for photocatalytic organic transformations. In particular, the synthetic methods, structures, photochemical properties, and catalytic performance of NDI/PDI-based hybrid photocatalysts are illustrated to provide useful guidance for the further development and application of these materials.
Collapse
Affiliation(s)
- Chixian He
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Weijun Dai
- School of Ethnic Medicine, Yunnan Minzu University, Kunmin 650504, China
| | - Yuxiang Zhao
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jian-Jun Liu
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
6
|
Ren XY, Chen FY, Zhang CH, Liang ZG, Yu XY, Han SD, Wang GM. Regulating the Topologies and Photoresponsive Properties of Lanthanum-Organic Frameworks. Chemistry 2024; 30:e202402581. [PMID: 39143837 DOI: 10.1002/chem.202402581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H2bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.
Collapse
Affiliation(s)
- Xin-Ye Ren
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Fan-Yao Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Chun-Hua Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Zhen-Gang Liang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Xiao-Yue Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| |
Collapse
|
7
|
Duan L, Zheng Q, Liang Y, Tu T. From Simple Probe to Smart Composites: Water-Soluble Pincer Complex With Multi-Stimuli-Responsive Luminescent Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409620. [PMID: 39300862 DOI: 10.1002/adma.202409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Water-soluble smart materials with multi-stimuli-responsiveness and ultra-long room-temperature phosphorescence (RTP) have garnered broad attention. Herein, a water-soluble terpyridine zinc complex (MeO-Tpy-Zn-OAc), featuring a simple donor-π-acceptor (D-π-A) structure is presented, which responds to a variety of stimuli, including changes in solvents, pH, temperature, and the addition of amino acids. Notably, MeO-Tpy-Zn-OAc functions as a fluorescence probe, capable of visually and selectively discriminating aspartate or histidine among other common amino acids in water. Additionally, when incorporated into polyvinyl alcohol (PVA) to form the composite MeO-Tpy-Zn-OAc@PVA, the material exhibits reversible writing, photochromism, and a prolonged RTP with a 14 s afterglow. These unique properties enable the composite to be utilized in potential applications such as secure data encryption and inkless printing.
Collapse
Affiliation(s)
- Lixin Duan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanlin Liang
- Forensic Science Institute of Shanghai Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai, 200083, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
8
|
Das N, Maity C. Multi-Colored Aqueous Ink for Rewritable Paper. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403512. [PMID: 39011973 DOI: 10.1002/smll.202403512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Indexed: 07/17/2024]
Abstract
As sustainable and eco-friendly replacements to conventional paper, rewritable paper is a very attractive alternative for communication, information circulation, and storage. Development is made for rewritable paper using chromogenic materials that change its color in presence of external stimuli. However, the new techniques have faced several major challenges including feasible operational method, eco-friendly approach. Herein, a simple, convenient, and eco-friendly strategy is described for the preparation of rewritable paper substrate, and multi colored ink for efficient use in writing, painting or printing purpose. In addition, writing with "invisible ink" on the rewritable paper can be realized for potential anti-counterfeiting application. The written, painted, or printed information on the paper substrate can be easily erased using an aqueous solution. Thus, the original paper can be retrieved and the paper substrate can be reused multiple times. Besides, the written or printed information can be retained for a prolonged time at ambient conditions. Overall, this approach shows the rewritable paper as a prototype of multicolor writing/painting application, offering a sustainable solution for reducing paper waste and promoting environmental stewardship.
Collapse
Affiliation(s)
- Nikita Das
- (Organic)Material Science and Engineering Laboratory, Department of Chemistry, School of Advanced Sciences, and Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore campus, Vellore, Tamil Nadu, 632014, India
| | - Chandan Maity
- (Organic)Material Science and Engineering Laboratory, Department of Chemistry, School of Advanced Sciences, and Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore campus, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
9
|
Dutta B, Datta S, Mir MH. Photoresponsive metal-organic framework materials for advance applications. Chem Commun (Camb) 2024; 60:9149-9162. [PMID: 39104303 DOI: 10.1039/d4cc02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The interaction between light and materials produces a range of phenomena within molecular systems, leading to advanced applications in the field of materials science. In this regard, metal-organic framework (MOF) materials have become superior candidates to others because of their easy tailor-made synthetic methods via incorporation of photoactive moieties into their structural assembly. Photoresponsive MOFs exhibit a massive variety of exciting properties, including photochromism, photomagnetism, photoluminescence, photon up or down conversion, photoconductivity, nonlinear optical properties, photosalient effects and photoinduced switching of conformations. These photoresponsive properties of MOFs regulate different potential applications, such as on-demand gas sorption and separation, optical sensing, fabrication of photoactuators and photosensing electronic devices, dye degradation, catalysis, cargo delivery, ink-free erasable printing, bio-imaging and drug delivery in biological systems. Therefore, judicious crystal engineering along with an understanding of their structure-property relationship will lead to the fabrication of desired photosensitive MOFs. Herein, we attempted to incorporate categorical descriptions based on advanced applications of photoresponsive MOFs considering a wide range of recent publications.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Sourav Datta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | | |
Collapse
|
10
|
You ZX, Xiao Y, Zhang T, Guan QL, Xing YH, Bai FY. Design and Construction of the Uranyl Coordination Polymer with Multifunction Stimulus Response: Fluorescent Sensors for Halide Ions and Photochromism. Inorg Chem 2024; 63:9823-9830. [PMID: 38757599 DOI: 10.1021/acs.inorgchem.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
It can provide ideas for the use of uranium elements in the treatment of spent fuel from nuclear wastewater to explore the application potential of uranium element. Thus, it is necessary to research the structure and properties of a novel uranyl coordination polymer (CP) for uranium recovery and reuse. Herein, we designed and prepared a new uranyl CP U-CMNDI based on UO22+ and H2CMNDI (H2CMNDI = N, N'-bis(carboxymethyl)-1,4,5,8-naphthalenediimide). Structural analysis shows that two uranyl ions are connected by two parallel deprotonated CMNDI ligands to form a discrete uranyl dimer structure. U-CMNDI can act as a potential stimulus-responsive halide ion sensor by a fluorescence "turn on" response in water. The limit of detection for fluoride (F-), bromide (Br-), iodide (I-), and chloride (Cl-) is 5.00, 5.32, 5.49, and 5.73 μM, respectively. The fluorescence "turn on" behavior is based on the photoinduced electron transfer (PET) mechanism between halide ions and electron-deficient NDI cores. In addition, U-CMNDI demonstrates a color response to ultraviolet light, exhibiting reversible photochromic behavior with a notable color change. The color change mechanism can contribute to the PET process and the radical process.
Collapse
Affiliation(s)
- Zi-Xin You
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Qing-Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| |
Collapse
|
11
|
Huang L, Li XN, Shen Y, Hua Y, Song RH, Cui WB, Li ZY, Zhang H. Tunable photo/thermochromic properties of Cd(II)-viologen coordination polymers modulated by coordination modes for flexible imaging films and anti-counterfeiting. Dalton Trans 2024; 53:8803-8811. [PMID: 38716557 DOI: 10.1039/d4dt00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Two photochromic Cd(II)-CPs were obtained based on the viologen ligand using different synthetic routes, named {[Cd4(p-BDC)4(CPB)2(H2O)2]·2H2O·EtOH}n (1) and {[Cd(p-BDC)(CPB)(H2O)]·(L)·DMF}n (2) (p-H2BDC = 1,4-benzene-dicarboxylate, HCPB·Cl = 1-(4-carboxyphenyl)-4,4'-bipyridinium·Cl, L = 2,4-dinitrochlorobenzene, and DMF = N,N-dimethylformamide), respectively. Due to different coordination modes, the two Cd(II)-CPs show different structures. Compound 1 exhibits a three-dimensional (3D) framework with bimetallic nodes, while compound 2 displays a 2-fold interpenetrated (4,4) net topology. Notably, the two Cd(II)-CPs exhibit substantial disparities in photo/thermochromism, which can be attributed to variations in donor-acceptor (D-A) distances arising from structural differences. Compound 1 showed visually sensitive photo- and thermochromic behavior due to multi-pathway electron transfer and short D-A distances, which is relatively rare in electron-transfer type photochromic systems. In contrast, 2 only demonstrates insensitive photochromic behavior, with a slight deepening of the color observed after 2 hours of UV light, which is due to the mono-pathway electron transfer and long D-A distance. Moreover, we first combined Cd(II)-viologen CPs with polydimethylsiloxane (PDMS) to prepare a 1@PDMS flexible UV imaging film. 1@PDMS exhibits excellent bendability and stretchability and maintains good photochromic properties after 100 bending cycles. To demonstrate the rapid color response and distinct color contrast of 1, its application in anti-counterfeiting is also demonstrated.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Xiao-Nan Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yuan Shen
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yang Hua
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Run-Hong Song
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Wen-Bo Cui
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Zi-Yi Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| |
Collapse
|
12
|
Huang L, Li XN, Shen Y, Song RH, Cui WB, Zhang H. Zinc tungstate encapsulated into a scarce Zn(II)-viologen framework with photochromic, electrochromic and chemochromic properties. Dalton Trans 2024; 53:5192-5201. [PMID: 38381164 DOI: 10.1039/d3dt03647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Smart chromic materials reacting to physicochemical stimuli are widely applied in optical switches, smart windows, and chemical sensors. Currently, most materials only respond to a single stimulus, but those that respond to multiple external stimuli are still in the minority. Herein, we report a novel porous zinc tungstate@metaloxoviologen framework [Zn3(Bcbpy)6(H2O)2]-[ZnW12O40]·6H2O (ZnW12@MV, H2BcbpyCl2 = 1,1'-bis(3-carboxybenzyl)-4,4'-bipyridinium dichloride), which shows multiple stimulus-responsive properties due to a combination of different functional motifs, namely, viologen electron acceptors, luminescent zinc-oxygen-clusters, porous cationic frameworks, and ZnW12O406- electron donors. Generally, the large-sized polyoxometalate (POM) anions serving as structure-directing agents can easily direct the formation of the oligomeric metaloxoviologen cations, mainly because POMs may break down some linkages leaving larger spaces for themselves. The large ZnW12O406- anions in ZnW12@MV are encapsulated into three-dimensional (3D) metaloxoviologen frameworks built up from the linkages of trinuclear zinc-oxygen clusters and Bcbpy viologens, which offer the first example of a 3D metaloxoviologen framework induced by large-sized POM anions. ZnW12@MV shows a reversible chromic response to X-ray/UV and electricity via different stimulus-induced electron transfers between electron-rich POM anions and electron-deficient metaloxoviologen frameworks, whereas the coloration changes are ascribed to the formation of radical and mixed-valence colored state ZnW12O406- species. The photochromic behavior is accompanied by photoluminescence quenching. The discriminative response to different-sized amines is attributed to the formation of viologen radicals through host-guest electron transfer. These results indicate that the multi-stimulus response ZnW12@MV can be applied in electrochromic devices, inkless erasable printing, and the detection of amines.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Xiao-Nan Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yuan Shen
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Run-Hong Song
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Wen-Bo Cui
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| |
Collapse
|
13
|
Peng N, Li J, Hua Y, Zhao S, Li G. Lanthanide-Polyoxometalate-Based Film with Reversible Photochromism and Luminescent Switching Properties for Erasable Inkless Security Printing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7973-7982. [PMID: 38291594 DOI: 10.1021/acsami.3c14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Security printing is of the utmost importance in the information era. However, the excessive use of inks and paper still faces many economic and environmental issues. Thus, developing erasable inkless security printing materials is a remarkable strategy to save resources, protect the environment, and improve information security. To this endeavor, a photoresponsive lanthanide-polyoxometalate-doped gelatin film with high transparency was developed through the solution casting method. Attenuated total reflection Fourier-transform infrared spectroscopy confirmed the electrostatic and hydrogen bond interactions between gelatin and lanthanide-polyoxometalate. Absorption spectra, luminescent spectra, and digital images indicated that the film displayed reversible photochromism behavior and was accompanied by luminescent switching property upon exposure to UV irradiation and oxygen (in the dark) alternately, which allowed its potential application as a reprintable medium for inkless security printing. The printed information can be erased upon exposure to oxygen in the dark, and the film can be reused for printing again. The film exhibited excellent erasability, reprintability, renewability, and low toxicity. In addition, multiple encryption strategies were designed to improve information security. This work offers an attractive alternative strategy for constructing a reprintable film for inkless security printing in terms of simplifying the preparation process, saving resources, and protecting the environment.
Collapse
Affiliation(s)
- Ning Peng
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jingfang Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yumei Hua
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Sicong Zhao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology (MOE), School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
14
|
Zhang YY, Wang HC, Jin XX, Li RJ, Li QG, Sun R, Li P, Wang BW, Wang L, Sui Q. Tunable Chromic Properties of Viologen-Metal Polymers Modulated by Coordination Modes for Inkless Erasable Printing. Chemistry 2023; 29:e202302397. [PMID: 37583100 DOI: 10.1002/chem.202302397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Inkless and erasable printing (IEP) based on chromic materials holds great promise to alleviate environmental and sustainable problems. Metal-organic polymers (MOPs) are bright platforms for constructing IEP materials. However, it is still challenging to design target MOPs with excellent specific functions rationally due to the intricate component-structure-property relationships. Herein, an effective strategy was proposed for the rational design IEP-MOP materials. The stimuli-responsive viologen moiety was introduced into the construction of MOPs to give it potential chromic behaviors and two different coordination models (i. e. bilateral coordination model, M1 ; unilateral coordinated model, M2 ) based on the same viologen ligand were designed. Aided by theoretical calculations, model M1 was recommended secondarily as a more suitable system for IEP materials. Along this line, two representative viologen-ZnII MOPs 1 and 2 with models M1 and M2 were synthesized successfully. Experiments exhibit that 1 does have quicker stimuli response, stronger color contrast and longer radical lifetime compared to 2. Significantly, the obtained 1-IEP media brightly inherits the excellent chromic characteristics of 1 and the flexibility of the paper at the same time, which achieves most daily printing requirements, as well as enough resolution and durability to be used in identification by smart device.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - He-Chong Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University Qinhuangdao, 066004, Hebei, P. R. China
| | - Xin-Xin Jin
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Run-Jie Li
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Qian-Ge Li
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Peng Li
- College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 234000, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University Qinhuangdao, 066004, Hebei, P. R. China
| | - Qi Sui
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
15
|
Xie J, Hou H, Lu H, Lu F, Liu W, Wang X, Cheng L, Zhang Y, Wang Y, Wang Y, Diwu J, Hu B, Chai Z, Wang S. Photochromic Uranyl-Based Coordination Polymer for Quantitative and On-Site Detection of UV Radiation Dose. Inorg Chem 2023; 62:15834-15841. [PMID: 37724987 DOI: 10.1021/acs.inorgchem.3c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A highly sensitive detection of ultraviolet (UV) radiation is required in a broad range of scientific research, chemical industries, and health-related applications. Traditional UV photodetectors fabricated by direct wide-band-gap inorganic semiconductors often suffer from several disadvantages such as complicated manufacturing procedures, requiring multiple operations and high-cost instruments to obtain a readout. Searching for new materials or simple strategies to develop UV dosimeters for quantitative, accurate, and on-site detection of UV radiation dose is still highly desirable. Herein, a photochromic uranyl-based coordination polymer [(UO2)(PBPCA)·DMF]·DMF (PBPCA = pyridine-3,5-bis(phenyl-4-carboxylate), DMF = N,N'-dimethylformamide, denoted as SXU-1) with highly radiolytic and chemical stabilities was successfully synthesized via the solvothermal method at 100 °C. Surprisingly, the fresh samples of SXU-1 underwent an ultra-fast UV-induced (365 nm, 2 mW) color variation from yellow to orange in less than 1 s, and then the color changed further from orange to brick red after the subsequent irradiation, inspiring us to develop a colorimetric dosimeter based on red-green-blue (RGB) parameters. The mechanism of radical-induced photochromism was intensively investigated by UV-vis absorption spectra, EPR analysis, and SC-XRD data. Furthermore, SXU-1 was incorporated into an optoelectronic device to fabricate a novel dosimeter for convenient, quantitative, and on-site detection of UV radiation dose.
Collapse
Affiliation(s)
- Jian Xie
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Huiliang Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifan Lu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xia Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Zhang S, Liu X, Hao P, Li G, Shen J, Fu Y. Dual Photo-/Electrochromic Pyromellitic Diimide-Based Coordination Polymer. Inorg Chem 2023; 62:14912-14921. [PMID: 37667503 DOI: 10.1021/acs.inorgchem.3c01613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
By the combination of N,N'-bis(carboxymethyl)-pyromellitic diimide (H2CMPMD, 1) and zinc ions, a novel PMD-based coordination polymer (CP), [Zn(CMPMD)(DMF)1.5]·0.5DMF (2) (DMF = N,N'-dimethylformamide), has been prepared and characterized. 1 and 2 exhibit completely different photochromic properties, which are mainly reflected in the photoresponsive rate (5 s for 1 vs 1 s for 2) and coloration contrast (from colorless to light green for 1 vs green for 2). This phenomenon should be attributed to the introduction of zinc ions and the consequent formation of the distinct interfacial contacts of electron donors (EDs) and electron acceptors (EAs) (dn-π = 3.404 and 3.448 Å for 1 vs dn-π = 3.343, 3.359, 3.398, and 3.495 Å for 2), suggesting a subtle modulating effect of metal ions on interfacial contacts, photoinduced intermolecular electron transfer (PIET) and photochromic behaviors. Interestingly, the photochromic performance of 2 can be enhanced after the removal of coordinated DMF, which might be ascribed to the decrease of the distance of EDs/EAs caused by lattice shrinkage, which further improves the efficiency of PIET. Meanwhile, 2 displays rapid electrochromic behavior with an obvious reversible color change from colorless to green, which can be used in an electrochromic device. This work develops a new type of EA for the construction of stimuli-responsive functional materials with excellent dual photo-/electrochromic properties.
Collapse
Affiliation(s)
- Shimin Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Xiaoxia Liu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Pengfei Hao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Gaopeng Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Junju Shen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Yunlong Fu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
17
|
Wen SZ, Zhong SD, Kan WQ, Zhao PS, He YC. Experimental and theoretical investigation on the hydrochromic property of a Ni(II)-containing coordination polymer with an inclined 2D → 3D polycatenation architecture. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Zhong XF, Luo GJ, Li WB, Chen XH, Wu Y, Chen YH, Ye JW, Bai J, Mo ZW, Chen XM. A series of naphthalenediimide-based metal-organic frameworks: synthesis, photochromism and inkless and erasable printing. Dalton Trans 2022; 51:14852-14857. [PMID: 36177919 DOI: 10.1039/d2dt02290g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new three-dimensional metal-organic frameworks were synthesized based on a naphthalenediimide derivative ligand, all of which exhibit photochromic behaviour due to the presence of the naphthalenediimide core. Interestingly, two of them possess significant colour changes under light, excellent stability, and appropriate photochromic lifetimes, thus showing potential for application in inkless and erasable printing media.
Collapse
Affiliation(s)
- Xiao-Feng Zhong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China.
| | - Guo-Jun Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China.
| | - Wen-Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China.
| | - Xiong-Hai Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China.
| | - Ying Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China.
| | - Yi-Hui Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China.
| | - Jia-Wen Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China.
| | - Jie Bai
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Zong-Wen Mo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China.
| | - Xiao-Ming Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China. .,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Shi YS, Yang DD, Zheng HW, Liang QF, Fang YH, Xiao T, Zheng XJ. Solvent-Modulated Self-Assembly of Naphthalenediimide-Based Cd(II) Complexes and the Controllable Photochromism via Conformational Isomerization. Inorg Chem 2022; 61:15973-15982. [PMID: 36173106 DOI: 10.1021/acs.inorgchem.2c02249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rational regulation of the properties of photochromic materials is a challenging and meaningful work. In the present work, NDI-based complexes, namely, [Cd0.5(NDI)(HBDC)]·H2O (1) and a series of conformational isomers of {[Cd(NDI)0.5(BDC)]·MeCN}n (2), were synthesized by varying the solvent conditions (H2BDC = terephthalic acid, NDI = N,N'-bis(3-pyridylcarbonylhydrazine)-1,4,5,8-naphthalene diimide). Complex 1 exhibits a 0D mononuclear structure without photochromic behavior due to the bad conjugation of the naphthalene diimide moiety. The conformational isomers of complex 2 manifest a 3D network, showing ultra-fast photo-induced intermolecular electron transfer photochromic behavior under X-ray, UV, and visible light. However, they show different photochromic rates and coloring contrast upon photoirradiation, which originates from their difference in the distances of lone pair(COO)···π(NDI). This was realized via controlling the solvent ratio in the reaction system. In addition, compared to UV/X-ray light, 2 exhibits greater sensitivity to visible light and is an organic-inorganic hybrid material with photomodulated luminescence. Based on the excellent performance, complex 2 can be applied to filter paper, showing potential applications as an inkless printing medium and selective perception of ammonia and amine vapors in the solid state via different visual color changes.
Collapse
Affiliation(s)
- Yong-Sheng Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qiong-Fang Liang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yu-Hui Fang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tong Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
20
|
Han Y, Nie Y, Ran L, Tuo S, Li Y, Yan J. Reversible or irreversible: the photochromic behavior studies of ionic compound containing γ-octamolybdate and pyrazole ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|