1
|
Hussain I, Arifeen WU, Khan SA, Aftab S, Javed MS, Hussain S, Ahmad M, Chen X, Zhao J, Rosaiah P, Fawy KF, Younis A, Sahoo S, Zhang K. M 4X 3 MXenes: Application in Energy Storage Devices. NANO-MICRO LETTERS 2024; 16:215. [PMID: 38874816 PMCID: PMC11178707 DOI: 10.1007/s40820-024-01418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
MXene has garnered widespread recognition in the scientific community due to its remarkable properties, including excellent thermal stability, high conductivity, good hydrophilicity and dispersibility, easy processability, tunable surface properties, and admirable flexibility. MXenes have been categorized into different families based on the number of M and X layers in Mn+1Xn, such as M2X, M3X2, M4X3, and, recently, M5X4. Among these families, M2X and M3X2, particularly Ti3C2, have been greatly explored while limited studies have been given to M5X4 MXene synthesis. Meanwhile, studies on the M4X3 MXene family have developed recently, hence, demanding a compilation of evaluated studies. Herein, this review provides a systematic overview of the latest advancements in M4X3 MXenes, focusing on their properties and applications in energy storage devices. The objective of this review is to provide guidance to researchers on fostering M4X3 MXene-based nanomaterials, not only for energy storage devices but also for broader applications.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, People's Republic of China.
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, South Korea
| | - Shahid Ali Khan
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, People's Republic of China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, People's Republic of China
| | - Jiyun Zhao
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, People's Republic of China
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, India
| | - Khaled Fahmi Fawy
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Younis
- Department of Physics, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, People's Republic of China.
| |
Collapse
|
2
|
Lamiel CSJ, Afroz MM, Cincotta RE, Krödel M, Li-Oakey KD. Experimental and Molecular Dynamic Modeling Studies of Electrospun Carbon Fiber Electrode Performance Enhancement by Potassium Ferricyanide Addition. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
3
|
Salem Alsaiari N, Ahmad M, Shaheen I, Ali I, Amara U, Mohammed Alzahrani F, Eldin SM, Ul Arifeen W, Jo Ko T, Hussain I. Three-dimensional flower-like nanocomposites based on ZnO/NiO as effective electrode materials for supercapacitors. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Hussain I, Lamiel C, Sahoo S, Javed MS, Ahmad M, Chen X, Gu S, Qin N, Assiri MA, Zhang K. Animal- and Human-Inspired Nanostructures as Supercapacitor Electrode Materials: A Review. NANO-MICRO LETTERS 2022; 14:199. [PMID: 36201062 PMCID: PMC9537411 DOI: 10.1007/s40820-022-00944-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/31/2022] [Indexed: 05/13/2023]
Abstract
Human civilization has been relentlessly inspired by the nurturing lessons; nature is teaching us. From birds to airplanes and bullet trains, nature gave us a lot of perspective in aiding the progress and development of countless industries, inventions, transportation, and many more. Not only that nature inspired us in such technological advances but also, nature stimulated the advancement of micro- and nanostructures. Nature-inspired nanoarchitectures have been considered a favorable structure in electrode materials for a wide range of applications. It offers various positive attributes, especially in energy storage applications, such as the formation of hierarchical two-dimensional and three-dimensional interconnected networked structures that benefit the electrodes in terms of high surface area, high porosity and rich surface textural features, and eventually, delivering high capacity and outstanding overall material stability. In this review, we comprehensively assessed and compiled the recent advances in various nature-inspired based on animal- and human-inspired nanostructures used for supercapacitors. This comprehensive review will help researchers to accommodate nature-inspired nanostructures in industrializing energy storage and many other applications.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Charmaine Lamiel
- Department of Chemical Engineering, University of Wyoming, Laramie, WY, 82071, USA
| | - Sumanta Sahoo
- Department of Chemistry, Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh, 517325, India
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Shuai Gu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Ning Qin
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
6
|
Hussain I, Ahmad M, Chen X, Abbas N, Al Arni S, Salih AA, Benaissa M, Ashraf M, Ayaz M, Imran M, Ansari MZ, Zhang K. Glycol-assisted Cu-doped ZnS polyhedron-like structure as binder-free novel electrode materials. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|