1
|
Wang Q, Wang Z, Yang Y, Zhang C, Han M, Wang W, Jin Y. A stretchable frequency reconfigurable antenna controlled by compressive buckling for W-band applications. MICROSYSTEMS & NANOENGINEERING 2025; 11:86. [PMID: 40360479 PMCID: PMC12075831 DOI: 10.1038/s41378-025-00890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/18/2025] [Accepted: 02/07/2025] [Indexed: 05/15/2025]
Abstract
Reconfigurable antennas have attracted significant interest because of their ability to dynamically adjust radiation properties, such as operating frequencies, thereby managing the congested frequency spectrum efficiently and minimizing crosstalk. However, existing approaches utilizing switches or advanced materials are limited by their discrete tunability, high static power consumption, or material degradation for long-term usage. In this study, we present a W-band frequency reconfigurable antenna that undergoes a geometric transformation from a two-dimensional (2D) precursor, selectively bonded to a prestretched elastomeric substrate, into a desired 3D layout through controlled compressive buckling. Modeling the buckling process using combined mechanics-electromagnetic finite element analysis (FEA) allows for the rational design of the antenna with desired strains applied to the substrate. By releasing the substrate at varying compression ratios, the antenna reshapes into different 3D configurations, enabling continuous frequency reconfigurability. Simulation and experimental results demonstrate that the antenna's resonant frequency can be tuned from 77 GHz in its 2D state to 94 GHz in its 3D state in a folded-dipole-like design.
Collapse
Affiliation(s)
- Qi Wang
- Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Zetian Wang
- School of Integrated Circuits, Peking University, Beijing, China
| | - Yang Yang
- Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Chi Zhang
- School of Integrated Circuits, Peking University, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
| | - Mengdi Han
- School of Future Technology, Peking University, Beijing, China.
| | - Wei Wang
- School of Integrated Circuits, Peking University, Beijing, China.
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, China.
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China.
| | - Yufeng Jin
- Peking University Shenzhen Graduate School, Peking University, Shenzhen, China.
- School of Integrated Circuits, Peking University, Beijing, China.
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, China.
| |
Collapse
|
2
|
Yan J, Ding J, Cao Y, Yi H, Zhan L, Gao Y, Ge K, Ji H, Li M, Feng H. Additively Manufactured Flexible EGaIn Sensor for Dynamic Detection and Sensing on Ultra-Curved Surfaces. SENSORS (BASEL, SWITZERLAND) 2024; 25:37. [PMID: 39796832 PMCID: PMC11722807 DOI: 10.3390/s25010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.1 mm. The size of the sensing unit was 3 × 3 mm2. This unit exhibited a wide linear sensing range (10-22,000 Pa) and high-pressure resolution (10 Pa) even on an ultra-curved surface (radius of curvature was 6 mm). Sliding was successfully detected at speeds of 8-54 mm/s. An artificial nose with nine sensing units was fabricated, and it exhibited excellent multitouch and sliding trajectory recognition capabilities. This confirmed that the electronic skin functioned normally, even on an ultra-curved surface.
Collapse
Affiliation(s)
- Jiangnan Yan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianing Ding
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Cao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongyu Yi
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Limeng Zhan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Yifan Gao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Kongyu Ge
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongjun Ji
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Mingyu Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Wang Z, Xiao X, Wu W, Zhang X, Pang Y. Ultra-conformal epidermal antenna for multifunctional motion artifact-free sensing and point-of-care monitoring. Biosens Bioelectron 2024; 253:116150. [PMID: 38422815 DOI: 10.1016/j.bios.2024.116150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Accurate acquisition of physiological and physical information from human tissue is essential for health monitoring, disease prevention and treatment. The existing antennas with traditional rigid or flexible substrates are susceptible to motion artifacts in wearable applications due to the miniaturization limitation and lack of proper adhesion and conformal interfaces with the skin. Recent advances in wearable radio frequency (RF) bioelectronics directly drawn on the skin are a promising solution for future skin-interfaced devices. Herein, we present a first-of-its kind epidermal antenna architecture with skin as the antenna substrate, which is ultra-low profile, ultra-conformal, ultra-compact, and simple fabrication without specialized equipment. The radiation unit and ground of antenna are drawn directly on the skin with the strong adhesion and ultra conformality. Therefore, this RF device is highly adaptable to motion. As a proof-of- feasibility, epidermal antenna can be freely drawn on demand at different locations on the skin for the development of temperature sensor, skin hydration sensor, strain sensor, glucose sensor and other devices. An epidermal antenna-based temperature sensor can offer accurate and real-time monitoring of human body temperature changes in the ultra-wideband (UWB) range. The results during the monitoring of hydration level with and without stretching show that the epidermal antenna drawn on the skin is motion artifact-free. We also designed an epidermal antenna array employing a horseshoe-shaped configuration for the precise identification of various gestures. In addition, the non-invasive blood glucose level (BGL) monitoring results during the in-vivo experiments report high correlation between the epidermal antenna responses and BGLs, without any time hysteresis. After the prediction of BGL by BP network, all the predicted BGL values are fallen 100% into the clinically acceptable zones. Together, these results show that epidermal antenna offers a promising new approach for biosensing platform.
Collapse
Affiliation(s)
- Zengxiang Wang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
| | - Xia Xiao
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China.
| | - Wenqi Wu
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaofeng Zhang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
| | - Yanwei Pang
- School of Electrical and Information Engineering, Tianjin Key Laboratory of Brain-Inspired Intelligence Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Yu H, Bian J, Chen F, Li K, Huang Y. Laser-Guided, Self-Confined Graphitization for High-Conductivity Embedded Electronics. RESEARCH (WASHINGTON, D.C.) 2024; 7:0305. [PMID: 38628354 PMCID: PMC11020139 DOI: 10.34133/research.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/31/2023] [Indexed: 04/19/2024]
Abstract
Facile fabrication of highly conductive and self-encapsulated graphene electronics is in urgent demand for carbon-based integrated circuits, field effect transistors, optoelectronic devices, and flexible sensors. The current fabrication of these electronic devices is mainly based on layer-by-layer techniques (separate circuit preparation and encapsulation procedures), which show multistep fabrication procedures, complicated renovation/repair procedures, and poor electrical property due to graphene oxidation and exfoliation. Here, we propose a laser-guided interfacial writing (LaserIW) technique based on self-confined, nickel-catalyzed graphitization to directly fabricate highly conductive, embedded graphene electronics inside multilayer structures. The doped nickel is used to induce chain carbonization, which firstly enhances the photothermal effect to increase the confined temperature for initial carbonization, and the generated carbon further increases the light-absorption capacity to fabricate high-quality graphene. Meanwhile, the nickel atoms contribute to the accelerated connection of carbon atoms. This interfacial carbonization inherently avoids the exfoliation and oxidation of the as-formed graphene, resulting in an 8-fold improvement in electrical conductivity (~20,000 S/m at 7,958 W/cm2 and 2 mm/s for 20% nickel content). The LaserIW technique shows excellent stability and reproducibility, with ±2.5% variations in the same batch and ±2% variations in different batches. Component-level wireless light sensors and flexible strain sensors exhibit excellent sensitivity (665 kHz/(W/cm2) for passive wireless light sensors) and self-encapsulation (<1% variations in terms of waterproof, antifriction, and antithermal shock). Additionally, the LaserIW technique allows for one-step renovation of in-service electronics and nondestructive repair of damaged circuits without the need to disassemble encapsulation layers. This technique reverses the layer-by-layer processing mode and provides a powerful manufacturing tool for the fabrication, modification, and repair of multilayer, multifunctional embedded electronics, especially demonstrating the immense potential for in-space manufacturing.
Collapse
Affiliation(s)
- Haiyang Yu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Bian
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
- College of Electronic and Optical Engineering & College of Flexible Electronic (Future Technology),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Furong Chen
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kan Li
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center,
Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Wang Z, Bo R, Bai H, Cao S, Wang S, Chang J, Lan Y, Li Y, Zhang Y. Flexible Impact-Resistant Composites with Bioinspired Three-Dimensional Solid-Liquid Lattice Designs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22553-22562. [PMID: 37098745 DOI: 10.1021/acsami.3c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ubiquitous solid-liquid systems in nature usually present an interesting mechanical property, the rate-dependent stiffness, which could be exploited for impact protection in flexible systems. Herein, a typical natural system, the durian peel, has been systematically characterized and studied, showing a solid-liquid dual-phase cellular structure. A bioinspired design of flexible impact-resistant composites is then proposed by combining 3D lattices and shear thickening fluids. The resulting dual-phase composites offer, simultaneously, low moduli (e.g., 71.9 kPa, lower than those of many reported soft composites) under quasi-static conditions and excellent energy absorption (e.g., 425.4 kJ/m3, which is close to those of metallic and glass-based lattices) upon dynamic impact. Numerical simulations based on finite element analyses were carried out to understand the enhanced buffering of the developed composites, unveiling a lattice-guided fluid-structure interaction mechanism. Such biomimetic lattice-based flexible impact-resistant composites hold promising potential for the development of next-generation flexible protection systems that can be used in wearable electronics and robotic systems.
Collapse
Affiliation(s)
- Zhanyu Wang
- Institute of Advanced Structure Technology, Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081 P. R. China
| | - Renheng Bo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Haoran Bai
- Institute of Advanced Structure Technology, Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081 P. R. China
| | - Shunze Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Shuheng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Jiahui Chang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Lan
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Ying Li
- Institute of Advanced Structure Technology, Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081 P. R. China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
6
|
Wang Y, Adam ML, Zhao Y, Zheng W, Gao L, Yin Z, Zhao H. Machine Learning-Enhanced Flexible Mechanical Sensing. NANO-MICRO LETTERS 2023; 15:55. [PMID: 36800133 PMCID: PMC9936950 DOI: 10.1007/s40820-023-01013-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/08/2023] [Indexed: 05/31/2023]
Abstract
To realize a hyperconnected smart society with high productivity, advances in flexible sensing technology are highly needed. Nowadays, flexible sensing technology has witnessed improvements in both the hardware performances of sensor devices and the data processing capabilities of the device's software. Significant research efforts have been devoted to improving materials, sensing mechanism, and configurations of flexible sensing systems in a quest to fulfill the requirements of future technology. Meanwhile, advanced data analysis methods are being developed to extract useful information from increasingly complicated data collected by a single sensor or network of sensors. Machine learning (ML) as an important branch of artificial intelligence can efficiently handle such complex data, which can be multi-dimensional and multi-faceted, thus providing a powerful tool for easy interpretation of sensing data. In this review, the fundamental working mechanisms and common types of flexible mechanical sensors are firstly presented. Then how ML-assisted data interpretation improves the applications of flexible mechanical sensors and other closely-related sensors in various areas is elaborated, which includes health monitoring, human-machine interfaces, object/surface recognition, pressure prediction, and human posture/motion identification. Finally, the advantages, challenges, and future perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed. These will give significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.
Collapse
Affiliation(s)
- Yuejiao Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Mukhtar Lawan Adam
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yunlong Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, Xi'an , 710071, People's Republic of China
| | - Libo Gao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
7
|
Huang J, Cao L, Xue CY, Zhou YZ, Cai YC, Zhao HY, Xing YH, Yu SH. Extremely Soft, Stretchable, and Self-Adhesive Silicone Conductive Elastomer Composites Enabled by a Molecular Lubricating Effect. NANO LETTERS 2022; 22:8966-8974. [PMID: 36374184 DOI: 10.1021/acs.nanolett.2c03173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Softness, adhesion, stretchability, and fast recovery from large deformations are essential properties for conductive elastomers that play an important role in the development of high-performance soft electronics. However, it remains an ongoing challenge to obtain conductive elastomers that combine these properties. We have fabricated a super soft (Young's modulus 2.3-12 kPa), highly stretchable (up to 1500% strain), and underwater adhesive silicone conductive elastomer composite (SF-C-PDMS) by incorporating dimethyl silicone oil as a lubricating agent in a cross-linked molecular network. The resultant SF-C-PDMS not only exhibits superior softness but also can readily recover after a strain of 1000%. The initial resistance only decreases by 8% after 100000 cycles of tensile fatigue test (100% strain, 0.5 Hz, 15 mm/s). This multifunctional silicone conductive elastomer composite is obtained in a one-step preparation at room temperature using commercially available materials. Moreover, we illustrate the capabilities of this composite in motion sensing.
Collapse
Affiliation(s)
- Jin Huang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Cao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Cheng-Yuan Xue
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Zhe Zhou
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Chun Cai
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hao-Yu Zhao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Han Xing
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|