1
|
Song Q, Gao H, Cheng L, Mitchell WL, Zhu M, Mao Y. Emerging Initiated Chemical Vapor Deposition Nanocoatings for Sustainable Food and Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6442-6455. [PMID: 40062506 DOI: 10.1021/acs.jafc.5c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Initiated chemical vapor deposition (iCVD) has emerged as a versatile technique for developing functional nanocoatings that address critical food and agricultural challenges. This review highlights the unique capacities of iCVD nanocoatings, which enable precise engineering of surface properties, such as targeted cellular and molecular interactions, antimicrobial activity, and fouling resistance. In addition, the solvent-free nature of iCVD is particularly advantageous for coating sensitive materials and complex geometries commonly used across food and agriculture applications. This review provides an overview of iCVD's chemistry, deposition mechanisms, and ability to control nanocoating morphology and composition. Key applications discussed include iCVD nanocoatings for food quality monitoring, pathogen detection, antimicrobial food packaging, biomass extraction, and irrigation water purification. By summarizing recent advancements and identifying emerging trends, this review showcases the potential of iCVD as a powerful tool for developing sustainable, nanoenabled solutions in modern food and agriculture production.
Collapse
Affiliation(s)
- Qing Song
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Haijun Gao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Lin Cheng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Whitney L Mitchell
- Division of Natural Sciences, Lyon College, Batesville, Arkansas 72501, United States
| | - Mengfan Zhu
- Division of Natural Sciences, Lyon College, Batesville, Arkansas 72501, United States
| | - Yu Mao
- Department of Biosystems Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
2
|
Guo Y, Yan M, Zhao W. Cinnamaldehyde grafted porous Aerogel-Organ gel liquid infused surface for achieving difunctional long-term dynamic antifouling. J Colloid Interface Sci 2024; 653:833-843. [PMID: 37769362 DOI: 10.1016/j.jcis.2023.09.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Marine biofouling caused a number of questions about energy consumption and safety. While there were still some challenges in developing an environmentally friendly, non-toxic and long-term antifouling slippery liquid-infused porous surface (SLIPS). Here, we proposed a difunctional antifouling strategy via constructing porous polydimethylsiloxane (PDMS) surface with a layer of aerogel by sol-gel method and grafted cinnamaldehyde chemically. The improvement in structure enhanced the liquid storage stability of coating, which in turn increases its anti-bioadhesive ability. In addition, the grafted cinnamaldehyde could also be used to act as a chemical antibacterial and is intelligently released in the face of harsh fouling environments, which played a key role in prolonging the antibacterial lifespan of the coating. After the 120-hour anti-bacteria experiment and the 25-day anti-algae experiment, the anti-Escherichia coli (anti-E. coli) rate and the anti-algae rate of the coating reached 99.6% and 99.9%, respectively, which was attributed to the excellent long-term antifouling properties of the coating. The combination of physical and chemical antifouling property made the coating achieve long-term fouling prevention for marine engineering equipment.
Collapse
Affiliation(s)
- Yuhan Guo
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Minglong Yan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Wenjie Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
3
|
Jiang F, Wang L, Jin N, Yuan J, Li Y, Lin J. Magnetic nanobead chain-assisted real-time impedance monitoring using PCB interdigitated electrode for Salmonella detection. iScience 2023; 26:108245. [PMID: 38026200 PMCID: PMC10651675 DOI: 10.1016/j.isci.2023.108245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Pathogen testing is effective to prevent food poisoning. Here, an electrochemical biosensor was explored for Salmonella detection by combining magnetic grid based bacterial separation with enzymatic catalysis based signal amplification on a PCB interdigitated electrode in a microfluidic chip. First, immune magnetic nanobeads, target bacteria, and immune polystyrene microspheres decorated with glucose oxidase were sufficiently mixed to form nanobead-bacteria-microsphere sandwich conjugates. Then, these conjugates were injected into the chip to form conjugate chains right over the electrode under an iron grid enhanced magnetic field. After non-conductive glucose was injected and catalyzed by glucose oxidase on the conjugate chains, conductive glucose acid and non-conductive hydrogen peroxide were continuously produced and rapidly diffused from the conjugate chains to the electrode. Finally, the impedance change was real-timely monitored and used to determine the bacterial amount. This sensor enabled detection of 50 CFU/mL Salmonella typhimurium in 1 h.
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Nana Jin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jing Yuan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Sahin F, Camdal A, Demirel Sahin G, Ceylan A, Ruzi M, Onses MS. Disintegration and Machine-Learning-Assisted Identification of Bacteria on Antimicrobial and Plasmonic Ag-Cu xO Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11563-11574. [PMID: 36890693 PMCID: PMC9999350 DOI: 10.1021/acsami.2c22003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Bacteria cause many common infections and are the culprit of many outbreaks throughout history that have led to the loss of millions of lives. Contamination of inanimate surfaces in clinics, the food chain, and the environment poses a significant threat to humanity, with the increase in antimicrobial resistance exacerbating the issue. Two key strategies to address this issue are antibacterial coatings and effective detection of bacterial contamination. In this study, we present the formation of antimicrobial and plasmonic surfaces based on Ag-CuxO nanostructures using green synthesis methods and low-cost paper substrates. The fabricated nanostructured surfaces exhibit excellent bactericidal efficiency and high surface-enhanced Raman scattering (SERS) activity. The CuxO ensures outstanding and rapid antibacterial activity within 30 min, with a rate of >99.99% against typical Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. The plasmonic Ag nanoparticles facilitate the electromagnetic enhancement of Raman scattering and enables rapid, label-free, and sensitive identification of bacteria at a concentration as low as 103 cfu/mL. The detection of different strains at this low concentration is attributed to the leaching of the intracellular components of the bacteria caused by the nanostructures. Additionally, SERS is coupled with machine learning algorithms for the automated identification of bacteria with an accuracy that exceeds 96%. The proposed strategy achieves effective prevention of bacterial contamination and accurate identification of the bacteria on the same material platform by using sustainable and low-cost materials.
Collapse
Affiliation(s)
- Furkan Sahin
- ERNAM—Erciyes
University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
| | - Ali Camdal
- Department
of Electronic Engineering, Trinity College
Dublin, Dublin 2 College Green, Dublin 2, Ireland
| | - Gamze Demirel Sahin
- Department
of Biomedical Engineering, Yildiz Technical
University, Istanbul 34220, Turkey
| | - Ahmet Ceylan
- Faculty
of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Mahmut Ruzi
- ERNAM—Erciyes
University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
| | - Mustafa Serdar Onses
- ERNAM—Erciyes
University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
- UNAM—Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
5
|
Liu L, Ma W, Wang X, Li S. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection. BIOSENSORS 2023; 13:350. [PMID: 36979564 PMCID: PMC10046079 DOI: 10.3390/bios13030350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There are various pathogenic bacteria in the surrounding living environment, which not only pose a great threat to human health but also bring huge losses to economic development. Conventional methods for bacteria detection are usually time-consuming, complicated and labor-intensive, and cannot meet the growing demands for on-site and rapid analyses. Sensitive, rapid and effective methods for pathogenic bacteria detection are necessary for environmental monitoring, food safety and infectious bacteria diagnosis. Recently, benefiting from its advantages of rapidity and high sensitivity, surface-enhanced Raman spectroscopy (SERS) has attracted significant attention in the field of bacteria detection and identification as well as drug susceptibility testing. Here, we comprehensively reviewed the latest advances in SERS technology in the field of bacteria analysis. Firstly, the mechanism of SERS detection and the fabrication of the SERS substrate were briefly introduced. Secondly, the label-free SERS applied for the identification of bacteria species was summarized in detail. Thirdly, various SERS tags for the high-sensitivity detection of bacteria were also discussed. Moreover, we emphasized the application prospects of microfluidic SERS chips in antimicrobial susceptibility testing (AST). In the end, we gave an outlook on the future development and trends of SERS in point-of-care diagnoses of bacterial infections.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrui Ma
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Department of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Yang Y, Zhu Q, Xu LP, Zhang X. Bioinspired liquid-infused surface for biomedical and biosensing applications. Front Bioeng Biotechnol 2022; 10:1032640. [PMID: 36246360 PMCID: PMC9557121 DOI: 10.3389/fbioe.2022.1032640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Nature always inspires us to develop advanced materials for diverse applications. The liquid-infused surface (LIS) inspired by Nepenthes pitcher plants has aroused broad interest in fabricating anti-biofouling materials over the past decade. The infused liquid layer on the solid substrate repels immiscible fluids and displays ultralow adhesion to various biomolecules. Due to these fascinating features, bioinspired LIS has been applied in biomedical-related fields. Here, we review the recent progress of LIS in bioengineering, medical devices, and biosensing, and highlight how the infused liquid layer affects the performance of medical materials. The prospects for the future trend of LIS are also presented.
Collapse
Affiliation(s)
- Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- *Correspondence: Li-Ping Xu, ; Xueji Zhang,
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Li-Ping Xu, ; Xueji Zhang,
| |
Collapse
|
7
|
Wu H, Wang MD, Zhu JQ, Li ZL, Wang WY, Gu LH, Shen F, Yang T. Mesoporous Nanoparticles for Diagnosis and Treatment of Liver Cancer in the Era of Precise Medicine. Pharmaceutics 2022; 14:1760. [PMID: 36145508 PMCID: PMC9500788 DOI: 10.3390/pharmaceutics14091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancer is the seventh-most-common cancer worldwide and the fourth-leading cause of cancer mortality. In the current era of precision medicine, the diagnosis and management of liver cancer are full of challenges and prospects. Mesoporous nanoparticles are often designed as specific carriers of drugs and imaging agents because of their special morphology and physical and chemical properties. In recent years, the design of the elemental composition and morphology of mesoporous nanoparticles have greatly improved their drug-loading efficiency, biocompatibility and biodegradability. Especially in the field of primary liver cancer, mesoporous nanoparticles have been modified as highly tumor-specific imaging contrast agents and targeting therapeutic medicine. Various generations of complexes and structures have been determined for the complicated clinical management requirements. In this review, we summarize these advanced mesoporous designs in the different diagnostic and therapeutic fields of liver cancer and discuss the relevant advantages and disadvantages of transforming applications. By comparing the material properties, drug-delivery characteristics and application methods of different kinds of mesoporous materials in liver cancer, we try to help determine the most suitable drug carriers and information media for future clinical trials. We hope to improve the fabrication of biomedical mesoporous nanoparticles and provide direct evidence for specific cancer management.
Collapse
Affiliation(s)
- Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Jia-Qi Zhu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhen-Li Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Wan-Yin Wang
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Li-Hui Gu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| |
Collapse
|
8
|
Innovative Application of SERS in Food Quality and Safety: A Brief Review of Recent Trends. Foods 2022; 11:foods11142097. [PMID: 35885344 PMCID: PMC9322305 DOI: 10.3390/foods11142097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Innovative application of surface-enhanced Raman scattering (SERS) for rapid and nondestructive analyses has been gaining increasing attention for food safety and quality. SERS is based on inelastic scattering enhancement from molecules located near nanostructured metallic surfaces and has many advantages, including ultrasensitive detection and simple protocols. Current SERS-based quality analysis contains composition and structural information that can be used to establish an electronic file of the food samples for subsequent reference and traceability. SERS is a promising technique for the detection of chemical, biological, and harmful metal contaminants, as well as for food poisoning, and allergen identification using label-free or label-based methods, based on metals and semiconductors as substrates. Recognition elements, including immunosensors, aptasensors, or molecularly imprinted polymers, can be linked to SERS tags to specifically identify targeted contaminants and perform authenticity analysis. Herein, we highlight recent studies on SERS-based quality and safety analysis for different foods categories spanning the whole food chain, ‘from farm to table’ and processing, genetically modified food, and novel foods. Moreover, SERS detection is a potential tool that ensures food safety in an easy, rapid, reliable, and nondestructive manner during the COVID-19 pandemic.
Collapse
|