1
|
Ren J, Wang J, Guo M, Li R, Guan Y. Efficient and selective gold recovery from electronic wastewater by synergistic effect between Fe 3O 4 nanoparticles and quaternary ammonium salt. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125793. [PMID: 40373437 DOI: 10.1016/j.jenvman.2025.125793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/25/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Recovering gold from electronic wastewater is of great significance in alleviating the shortage of metal resources and reducing environmental pollution, especially considering the increasing number of discarded electronic devices. However, the ultra-low concentration of gold and the competitive interference of various metals pose significant challenges. In this work, we used Fe3O4 nanoparticles and quaternary ammonium salt to recover gold from electronic wastewater. The method achieved a gold recovery efficiency of 98.2 % within just 3 min. The mechanism of gold recovery was investigated using techniques such as SEM, EDX, FT-IR, XPS, and XRD. The Au (III) ions were complexed with tetrabutylammonium nitrate to form the [N4444][AuCl4] complex, and this complex then aggregated with Fe3O4 nanoparticles to form nanoclusters, while Fe (II) ions on the surface of Fe3O4 nanoparticles reduced the Au (III) ions to Au (0). This study proposed a mechanism of complexation-aggregation-reduction-separation to recover gold. On application to a simulated electronic wastewater, the method exhibited excellent selectivity for Au (III), achieving a recovery efficiency of 99.1 %. The regeneration of Fe3O4 nanoparticles can be readily performed by ultrasound, retaining a 96.7 % recovery rate of Au (III) even after six consecutive cycles. This study proposed the combination of Fe3O4 nanoparticles and quaternary ammonium salt for gold recovery, which provided an environmentally friendly solution to address the increasing demand for precious metal resources in industry.
Collapse
Affiliation(s)
- Jinghan Ren
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mingqi Guo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruonan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yueping Guan
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
2
|
Yang K, Nikolaev KG, Li X, Erofeev I, Mirsaidov UM, Kravets VG, Grigorenko AN, Qiu X, Zhang S, Novoselov KS, Andreeva DV. 2D Electrodes From Functionalized Graphene for Rapid Electrochemical Gold Extraction and Reduction From Electronic Waste. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408533. [PMID: 39504250 PMCID: PMC11714188 DOI: 10.1002/advs.202408533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Indexed: 11/08/2024]
Abstract
Electronic waste (e-waste) contains substantial quantities of valuable precious metals, particularly gold (Au). However, inefficient metal recovery leads to these precious metals being discarded in landfills, causing significant water and environmental contamination. This study introduces a two-dimensional (2D) electrode with a layered graphene oxide membrane functionalized by chitosan (GO/CS). The GO/CS membrane acts as an ion-selective layer and demonstrates capabilities in the electrochemical extraction and reduction of Au ions. The multiple functional groups of GO and CS offer high cooperativity in ion extraction and reduction, achieving 95 wt.% extraction efficiency within 10 min. The simultaneous extraction and electrocatalytic reduction of Au ions within the membrane leads to the formation of ready-to-use metallic Au forms such as chips and sensors. Such an approach eliminates the processing steps required to convert extracted gold into functional products, reducing time, cost, and energy. This direct formation of usable Au components enhances the efficiency of the recovery process, making it economically viable and environmentally sustainable. The gold mining market is projected to be valued at $270 billion by 2032, with the recycling segment reaching $10.8 billion, highlighting the substantial benefits and economic potential of efficient e-waste recycling technologies.
Collapse
Affiliation(s)
- Kou Yang
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
| | - Konstantin G. Nikolaev
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
| | - Xiaolai Li
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Ivan Erofeev
- Department of Biological SciencesNational University of SingaporeSingapore117558Singapore
- Centre for BioImaging SciencesNational University of SingaporeSingapore117543Singapore
| | - Utkur M. Mirsaidov
- Centre for BioImaging SciencesNational University of SingaporeSingapore117543Singapore
- Department of PhysicsNational University of SingaporeSingapore117551Singapore
| | - Vasyl G. Kravets
- Department of Physics and AstronomyManchester UniversityManchesterM13 9PLUK
| | | | - Xueqing Qiu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Shanqing Zhang
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Daria V. Andreeva
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingapore117544Singapore
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| |
Collapse
|
3
|
Fu K, Liu X, Zhang X, Zhou S, Zhu N, Pei Y, Luo J. Utilizing cost-effective pyrocarbon for highly efficient gold retrieval from e-waste leachate. Nat Commun 2024; 15:6137. [PMID: 39033214 PMCID: PMC11271467 DOI: 10.1038/s41467-024-50595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Addressing burdens of electronic waste (E-waste) leachate while achieving sustainable and selective recovery of noble metals, such as gold, is highly demanded due to its limited supply and escalating prices. Here we demonstrate an environmentally-benign and practical approach for gold recovery from E-waste leachate using alginate-derived pyrocarbon sorbent. The sorbent demonstrates potent gold recovery performance compared to most previously reported advanced sorbents, showcasing high recovery capacity of 2829.7 mg g-1, high efficiency (>99.5%), remarkable selectivity (Kd ~ 3.1 × 108 mL g-1), and robust anti-interference capabilities within environmentally relevant contexts. The aromatic structures of pyrocarbon serve as crucial electrons sources, enabling a hydroxylation process that simultaneously generates electrons and phenolic hydroxyls for the reduction of gold ions. Our investigations further uncover a "stepwise" nucleation mechanism, in which gold ions are reduced as intermediate gold-chlorine clusters, facilitating rapid reduction process by lowering energy barriers from 1.08 to -21.84 eV. Technoeconomic analysis demonstrates its economic viability with an input-output ratio as high as 1370%. Our protocol obviates the necessity for organic reagents whilst obtaining 23.96 karats gold product from real-world central processing units (CPUs) leachates. This work introduces a green sorption technique for gold recovery, emphasizing its role in promoting a circular economy and environmental sustainability.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Nanwen Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Pei
- Department of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Ahmad M, Naik MUD, Tariq MR, Khan I, Zhang L, Zhang B. Advances in natural polysaccharides for gold recovery from e-waste: Recent developments in preparation with structural features. Int J Biol Macromol 2024; 261:129688. [PMID: 38280695 DOI: 10.1016/j.ijbiomac.2024.129688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
The increasing demand for gold because of its high market price and its wide use in the electronic industry has attracted interest in gold recovery from electronic waste (e-waste). Gold is being dumped as solid e-waste which contains gold concentrations ten times higher than gold ores. Adsorption is a widely used approach for extracting gold from e-waste due to its simplicity, low cost, high efficiency, and reusability of adsorbent material. Natural polysaccharides received increased attention due to their natural abundance, multi-functionality, biodegradability, and nontoxicity. In this review, a brief history, and advancements in this technology were evaluated with recent developments in the preparation and mechanism advancements of natural polysaccharides for efficient gold recovery. Moreover, we have discussed some bifunctional modified polysaccharides with detailed gold adsorption mechanisms. The modified adsorbent materials developed from polysaccharides coupled with inorganic/organic functional groups would demonstrate an efficient technology for the development of new bio-based materials for efficient gold recovery from e-waste. Also, future views are recommended for highlighting the direction to achieve fast and effective gold recovery from e-waste in a friendly and sustainable manner.
Collapse
Affiliation(s)
- Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Xian Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, 710129, China
| | - Mehraj Ud-Din Naik
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Rizwan Tariq
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an 710072, China.
| |
Collapse
|
5
|
Li X, Wang YL, Wen J, Zheng L, Qian C, Cheng Z, Zuo H, Yu M, Yuan J, Li R, Zhang W, Liao Y. Porous organic polycarbene nanotrap for efficient and selective gold stripping from electronic waste. Nat Commun 2023; 14:263. [PMID: 36650177 PMCID: PMC9845340 DOI: 10.1038/s41467-023-35971-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The role of N-heterocyclic carbene, a well-known reactive site, in chemical catalysis has long been studied. However, its unique binding and electron-donating properties have barely been explored in other research areas, such as metal capture. Herein, we report the design and preparation of a poly(ionic liquid)-derived porous organic polycarbene adsorbent with superior gold-capturing capability. With carbene sites in the porous network as the "nanotrap", it exhibits an ultrahigh gold recovery capacity of 2.09 g/g. In-depth exploration of a complex metal ion environment in an electronic waste-extraction solution indicates that the polycarbene adsorbent possesses a significant gold recovery efficiency of 99.8%. X-ray photoelectron spectroscopy along with nuclear magnetic resonance spectroscopy reveals that the high performance of the polycarbene adsorbent results from the formation of robust metal-carbene bonds plus the ability to reduce nearby gold ions into nanoparticles. Density functional theory calculations indicate that energetically favourable multinuclear Au binding enhances adsorption as clusters. Life cycle assessment and cost analysis indicate that the synthesis of polycarbene adsorbents has potential for application in industrial-scale productions. These results reveal the potential to apply carbene chemistry to materials science and highlight porous organic polycarbene as a promising new material for precious metal recovery.
Collapse
Affiliation(s)
- Xinghao Li
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Yong-Lei Wang
- grid.10548.380000 0004 1936 9377Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691 Sweden
| | - Jin Wen
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Linlin Zheng
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Cheng Qian
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Zhonghua Cheng
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Hongyu Zuo
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Mingqing Yu
- grid.255169.c0000 0000 9141 4786State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Jiayin Yuan
- grid.10548.380000 0004 1936 9377Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691 Sweden
| | - Rong Li
- grid.255169.c0000 0000 9141 4786College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620 China
| | - Weiyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
6
|
E-waste derived CuAu bimetallic catalysts supported on carbon cloth enabling effective degradation of bisphenol A via an electro-Fenton process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Kaczorowska MA. The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions-The Latest Achievements and Potential Industrial Applications: A Review. MEMBRANES 2022; 12:1135. [PMID: 36422127 PMCID: PMC9695490 DOI: 10.3390/membranes12111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/12/2023]
Abstract
The growing demand for environmentally friendly and economical methods of removing toxic metal ions from polluted waters and for the recovery of valuable noble metal ions from various types of waste, which are often treated as their secondary source, has resulted in increased interest in techniques based on the utilization of polymer inclusion membranes (PIMs). PIMs are characterized by many advantages (e.g., the possibility of simultaneous extraction and back extraction, excellent stability and high reusability), and can be adapted to the properties of the removed target analyte by appropriate selection of carriers, polymers and plasticizers used for their formulation. However, the selectivity and efficiency of the membrane process depends on many factors (e.g., membrane composition, nature of removed metal ions, composition of aqueous feed solution, etc.), and new membranes are systematically designed to improve these parameters. Numerous studies aimed at improving PIM technology may contribute to the wider use of these methods in the future on an industrial scale, e.g., in wastewater treatment. This review describes the latest achievements related to the removal of various metal ions by PIMs over the past 3 years, with particular emphasis on solutions with potential industrial application.
Collapse
Affiliation(s)
- Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85326 Bydgoszcz, Poland
| |
Collapse
|