1
|
Thangudu S, Su CH. Review of light activated antibacterial nanomaterials in the second biological window. J Nanobiotechnology 2025; 23:293. [PMID: 40229882 PMCID: PMC11998224 DOI: 10.1186/s12951-025-03333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial infections continue to pose a major threat to public health, contributing to high mortality rates worldwide. The growing ineffectiveness of conventional antibiotics has created an urgent need for alternative solutions. Nanomaterials (NMs) have emerged as a promising approach to combating bacterial infections due to their unique physicochemical properties, and extensive research has been conducted to address this crisis, yielding notable results. However, challenges such as limited light absorption and inherent cytotoxicity remain significant concerns. Furthermore, the clinical adoption of single-mode phototherapy is often restricted by the shallow tissue penetration of traditional light sources. The second biological window (NIR-II, 950-1450 nm) offers a groundbreaking opportunity for therapeutic and diagnostic applications by enabling deeper tissue penetration. As a result, growing research efforts are dedicated to developing NIR-II activated photosensitizers and nanomaterials to overcome challenges such as poor light absorption, limited tissue penetration, and suboptimal activation. Despite significant advancements, a comprehensive review of antibacterial nanomaterials specifically designed for the NIR-II window is still lacking in literature. This review aims to fill that gap by discussing the latest advancements, challenges, and potential of light-activated antibacterial nanomaterials within the BW-II region. The goal is to enhance understanding and guide the development of more efficient nanomaterials for future biomedical and clinical applications.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
- Canary Center for Cancer Early Detection, Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Palo Alto, CA, USA.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
- Institute for Radiological Research, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
2
|
Basu S, Biswas P, Anto M, Singh N, Mukherjee K. Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery. 3 Biotech 2024; 14:289. [PMID: 39507057 PMCID: PMC11534931 DOI: 10.1007/s13205-024-04135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Over the years, nanotechnology has gained popularity as a viable solution to address gene and drug delivery challenges over conventional methods. Extensive research has been conducted on nanosystems that consist of organic/inorganic materials, drugs, and its biocompatibility become the primary goal of improving drug delivery. Various surface modification methods help focus targeted and controlled drug release, further enabling multidrug delivery also. This newer technology ensures the stability of drugs that can unravel the mechanisms involved in cellular processes of disease development and its management. Tailored medication delivery provides benefits such as therapy, controlled release, and reduced adverse effects, which are especially important for controlling illnesses like cancer. However, multifunctional nanocarriers that possess high viscoelasticity, extended circulation half-life, biocompatibility, and biodegradability face some challenges and limitations too in human bodies. To produce a consistent therapeutic platform based on complex three-dimensional nanoparticles, careful design and engineering, thorough orthogonal analysis methods, and reproducible scale-up and manufacturing processes will be required in the future. Safety and effectiveness of nano-based drug delivery should be thoroughly investigated in preclinical and clinical trials, especially when considering biodistribution, targeting specific areas, and potential immunological toxicities. Overall, the current review article explores the advancements in nanotechnology, specific to nanomaterial-enabled drug delivery systems, carrier fabrication techniques and modifications, disease management, clinical research, applications, limitations, and future challenges. The work portrays how nanomedicine distribution affects healthcare with an emphasis on the developments in drug delivery techniques.
Collapse
Affiliation(s)
- Shatabdi Basu
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135 India
| | - Pragnya Biswas
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Mariya Anto
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Nandini Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
3
|
Hu Q, Zhang B, Ren H, Zhou X, He C, Shen Y, Zhou Z, Hu H. Supramolecular metal-organic frameworks as host-guest nanoplatforms for versatile and customizable biomedical applications. Acta Biomater 2023; 168:617-627. [PMID: 37482147 DOI: 10.1016/j.actbio.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Molecular imaging of disease with multifunctional nanoparticles has improved specificity and sensitivity but also raises the complexity, potential toxicity, and cost. Here, we show a facile and degradable self-assembly β-cyclodextrin metal-organic framework (β-CD-MOF) nanoplatform for customizable multifunctional imaging. These β-CD-MOF nanoparticles were obtained with favorable morphology and size by controlling the degradation time. The β-CD-MOF were used as nanoplatforms for facile functionalization with adamantane (Ad)-modified probes through host-guest interactions between the surface β-CD units and Ad molecules. We demonstrated the method's feasibility and capability by developing various contrast agents for multiple biomedical imaging, including fluorescence imaging, magnetic resonance imaging (MRI), and computed tomography (CT) imaging. The nanoprobes showed superior performance compared to the corresponding small molecular probes, including better physio-chemical properties (e.g., about 5 times of T1 relaxivity for MRI, 1.2 times of Hounsfield units for CT), improved pharmacokinetics, effective tissue imaging capability, and low safety concerns. These β-CD-MOF-based nanoparticles are promising host-guest nanoplatforms for developing multifunctional and safe imaging probes. STATEMENT OF SIGNIFICANCE: Molecular imaging of disease with multifunctional nanoparticles has improved specificity and sensitivity but also raises the complexity, potential toxicity, and cost. Here, we introduce facile and degradable self-assembly β-cyclodextrin metal-organic framework (β-CD-MOF) nanoplatforms for customizable multifunctional imaging. The significance of this work includes: 1) This work reports the tailoring of MOFs nanoparticles with suitable sizes and shapes for biomedical applications through controllable morphological transition and degradation; 2) The β-CD-MOF-based host-guest nanoplatforms are facile and feasible for developing multifunctional nanoparticular contrast agents for effective tissue imaging; 3) The nanoparticular contrast agents show low safety concerns with a long-term tissue deposition similar to the small molecular probes.
Collapse
Affiliation(s)
- Qiuhui Hu
- Department of Radiology, Sir Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huiming Ren
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou 310027, China.
| | - Chengbin He
- Department of Radiology, Sir Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hongjie Hu
- Department of Radiology, Sir Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
4
|
Thangudu S, Lin WC, Lee CL, Liao MC, Yu CC, Wang YM, Su CH. Ligand free FeSn 2 alloy nanoparticles for safe T2-weighted MR imaging of in vivo lung tumors. Biomater Sci 2023; 11:2177-2185. [PMID: 36740962 DOI: 10.1039/d2bm01517j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biosafety is a critical issue for the successful translocation of nanomaterial-based therapeutic/diagnostic agents from bench to bedside. For instance, after the withdrawal of clinically approved magnetic resonance (MR) imaging contrast agents (CAs) due to their biosafety issues, there is a massive demand for alternative, efficient, and biocompatible MR contrast agents for future MRI clinical applications. To this end, here we successfully demonstrate the in vivo MR contrast abilities and biocompatibilities of ligand-free FeSn2 alloy NPs for tracking in vivo lung tumors. In vitro and in vivo results reveal the FeSn2 alloy NPs acting as appreciable T2 weighted MR contrast agents to locate tumors. The construction of iron (Fe) on biocompatible tin (Sn) greatly facilitates the reduction of the intrinsic toxicities of Fe in vivo resulting in no significant abnormalities in liver and kidney functions. Therefore, we envision that constructing ligand-free alloy NPs will be a promising candidate for tracking in vivo tumors in future clinical applications.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chin-Lai Lee
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Min-Chiao Liao
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
5
|
Huang CBX, Tu TY. Recent advances in vascularized tumor-on-a-chip. Front Oncol 2023; 13:1150332. [PMID: 37064144 PMCID: PMC10099572 DOI: 10.3389/fonc.2023.1150332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
The vasculature plays a critical role in cancer progression and metastasis, representing a pivotal aspect in the creation of cancer models. In recent years, the emergence of organ-on-a-chip technology has proven to be a robust tool, capable of replicating in vivo conditions with exceptional spatiotemporal resolution, making it a significant asset in cancer research. This review delves into the latest developments in 3D microfluidic vascularized tumor models and their applications in vitro, focusing on heterotypic cellular interactions, the mechanisms of metastasis, and therapeutic screening. Additionally, the review examines the benefits and drawbacks of these models, as well as the future prospects for their advancement.
Collapse
Affiliation(s)
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Ting-Yuan Tu,
| |
Collapse
|
6
|
Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci 2022; 10:5032-5053. [PMID: 35858468 DOI: 10.1039/d2bm00692h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) holds promise for the early clinical diagnosis of various diseases, but most clinical MR techniques require the use of a contrast medium. Several nanomaterial (NM) mediated contrast agents (CAs) are widely used as T1- and T2-based MR contrast agents for clinical and non-clinical applications. Unfortunately, most NM-based CAs are toxic or non-biocompatible, restricting their practical/clinical applications. Therefore, the development of nontoxic and biocompatible CAs for clinical MRI diagnosis is highly desired. To this end, several biocompatible and biomimetic strategies have been developed to offer long blood circulation time, significant biocompatibility, in vivo biodistribution and high contrast ability for efficient imaging. However, detailed review reports on biocompatible NMs, specifically for MR imaging have not yet been summarized. Thus, in the present review we summarize various surface coating strategies (such as polymers, proteins, cell membranes, etc.) to achieve biocompatible NPs, providing a detailed discussion of advances and future prospects for safe MRI imaging.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Eng-Yen Huang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan. .,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
7
|
Chen H, Liu YC, Zhang Z, Li M, Du L, Wu PC, Chong WH, Ren F, Zheng W, Liu TM. Mouse Strain- and Charge-Dependent Vessel Permeability of Nanoparticles at the Lower Size Limit. Front Chem 2022; 10:944556. [PMID: 35923258 PMCID: PMC9339680 DOI: 10.3389/fchem.2022.944556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Remarkable advancement has been made in the application of nanoparticles (NPs) for cancer therapy. Although NPs have been favorably delivered into tumors by taking advantage of the enhanced permeation and retention (EPR) effect, several physiological barriers present within tumors tend to restrict the diffusion of NPs. To overcome this, one of the strategies is to design NPs that can reach lower size limits to improve tumor penetration without being rapidly cleared out by the body. Several attempts have been made to achieve this, such as selecting appropriate nanocarriers and modifying surface properties. While many studies focus on the optimal design of NPs, the influence of mouse strains on the effectiveness of NPs remains unknown. Therefore, this study aimed to assess whether the vascular permeability of NPs near the lower size limit differs among mouse strains. We found that the vessel permeability of dextran NPs was size-dependent and dextran NPs with a size below 15 nm exhibited leakage from postcapillary venules in all strains. Most importantly, the leakage rate of 8-nm fluorescein isothiocyanate dextran was significantly higher in the BALB/c mouse strain than in other strains. This strain dependence was not observed in slightly positive TRITC-dextran with comparable sizes. Our results indicate that the influence on mouse strains needs to be taken into account for the evaluation of NPs near the lower size limit.
Collapse
Affiliation(s)
- Haoran Chen
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yu-Cheng Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhiming Zhang
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Moxin Li
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Lidong Du
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Pei-Chun Wu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Wai-How Chong
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Weiming Zheng
- Translational Medicine R&D Center, Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
8
|
Liao FC, Wang YK, Cheng MY, Tu TY. A Preliminary Investigation of Embedding In Vitro HepaRG Spheroids into Recombinant Human Collagen Type I for the Promotion of Liver Differentiation. Polymers (Basel) 2022; 14:polym14091923. [PMID: 35567092 PMCID: PMC9103061 DOI: 10.3390/polym14091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background: In vitro three-dimensional (3D) hepatic spheroid culture has shown great promise in toxicity testing because it better mimics the cell–cell and cell–matrix interactions found in in vivo conditions than that of the traditional two-dimensional (2D) culture. Despite embedding HepaRG spheroids with collagen type I (collagen I) extracellular matrix (ECM) revealed a much better differentiation capability, almost all the collagen utilized in in vitro hepatocytes cultures is animal-derived collagen that may limit its use in human toxicity testing. Method: Here, a preliminary investigation of HepaRG cells cultured in different dimensionalities and with the addition of ECM was performed. Comparisons of conventional 2D culture with 3D spheroid culture were performed based on their functional or structural differences over 7 days. Rat tail collagen (rtCollagen) I and recombinant human collagen (rhCollagen) I were investigated for their ability in promoting HepaRG spheroid differentiation. Results: An immunofluorescence analysis of the hepatocyte-specific functional protein albumin suggested that HepaRG spheroids demonstrated better hepatic function than spheroids from 2D culture, and the function of HepaRG spheroids improved in a time-dependent manner. The fluorescence intensities per unit area of spheroids formed by 1000 cells on days 7 and 10 were 25.41 and 45.38, respectively, whereas almost undetectable fluorescence was obtained with 2D cells. In addition, the embedding of HepaRG spheroids into rtCollagen and rhCollagen I showed that HepaRG differentiation can be accelerated relative to the differentiation of spheroids grown in suspension, demonstrating the great promise of HepaRG spheroids. Conclusions: The culture conditions established in this study provide a potentially novel alternative for promoting the differentiation of HepaRG spheroids into mature hepatocytes through a collagen-embedded in vitro liver spheroid model. This culture method is envisioned to provide insights for future drug toxicology.
Collapse
Affiliation(s)
- Fang-Chun Liao
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (F.-C.L.); (M.-Y.C.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ming-Yang Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (F.-C.L.); (M.-Y.C.)
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (F.-C.L.); (M.-Y.C.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Tu TY, Shen YP, Lim SH, Wang YK. A Facile Method for Generating a Smooth and Tubular Vessel Lumen Using a Viscous Fingering Pattern in a Microfluidic Device. Front Bioeng Biotechnol 2022; 10:877480. [PMID: 35586553 PMCID: PMC9108369 DOI: 10.3389/fbioe.2022.877480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Blood vessels are ubiquitous in the human body and play essential roles not only in the delivery of vital oxygen and nutrients but also in many disease implications and drug transportation. Although fabricating in vitro blood vessels has been greatly facilitated through various microfluidic organ-on-chip systems, most platforms that are used in the laboratories suffer from a series of laborious processes ranging from chip fabrication, optimization, and control of physiologic flows in micro-channels. These issues have thus limited the implementation of the technique to broader scientific communities that are not ready to fabricate microfluidic systems in-house. Therefore, we aimed to identify a commercially available microfluidic solution that supports user custom protocol developed for microvasculature-on-a-chip (MVOC). The custom protocol was validated to reliably form a smooth and functional blood vessel using a viscous fingering (VF) technique. Using VF technique, the unpolymerized collagen gel in the media channels was extruded by less viscous fluid through VF passive flow pumping, whereby the fluid volume at the inlet and outlet ports are different. The different diameters of hollow tubes produced by VF technique were carefully investigated by varying the ambient temperature, the pressure of the passive pump, the pre-polymerization time, and the concentration of collagen type I. Subsequently, culturing human umbilical vein endothelial cells inside the hollow structure to form blood vessels validated that the VF-created structure revealed a much greater permeability reduction than the vessel formed without VF patterns, highlighting that a more functional vessel tube can be formed in the proposed methodology. We believe the current protocol is timely and will offer new opportunities in the field of in vitro MVOC.
Collapse
Affiliation(s)
- Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Ting-Yuan Tu,
| | - Yen-Ping Shen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|