1
|
Mazel A, Khan A, Diring S, Odobel F, Bellet D, Rougier A. Electrochromic, Surface-Anchored Metal-Organic Frameworks for Stabilized Silver Nanowire Flexible Transparent Electrodes. J Phys Chem Lett 2024; 15:9441-9448. [PMID: 39248592 DOI: 10.1021/acs.jpclett.4c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Despite excellent optical and electrical properties, the brittleness of indium tin oxide (ITO), used as a transparent electrode, prevents the realization of stable flexible devices. If silver nanowire (AgNW) networks represent a promising alternative, their lack of thermal and electrochemical stability still prevents their fast development in numerous applications. Herein, we report a novel strategy consisting of the deposition of an electrochromic and protective layer of oriented hybrid materials, also known as surface-anchored metal-organic frameworks (SurMOFs). Furthermore, the dual role played by the SurMOF is achieved using a room-temperature and low-cost method for the efficient use of bare AgNWs. A step forward was achieved by demonstrating electrochemical and mechanical stability for flexible electrochromic SurMOF@AgNW/PET thin films, switching reversibly from orange (+0.2 V) to blue (-0.8 V) in 8.4 s and 10.4 s, respectively, with a color efficiency of 158 cm2/C after being bent 300 times.
Collapse
Affiliation(s)
- Antoine Mazel
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 Av. du Dr. Schweitzer, F-33600 Pessac, France
| | - Ambreen Khan
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 Av. du Dr. Schweitzer, F-33600 Pessac, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-33800 Grenoble, France
| | - Stéphane Diring
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Fabrice Odobel
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Daniel Bellet
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-33800 Grenoble, France
| | - Aline Rougier
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 Av. du Dr. Schweitzer, F-33600 Pessac, France
| |
Collapse
|
2
|
Li P, Ma X, Gong G, Xu C, Zhang Z. Room-Temperature, Solution-Processed, Robust, Transparent, and Conductive SiO x/AgNW Nanocomposite Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43724-43733. [PMID: 39121209 DOI: 10.1021/acsami.4c07561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
AgNW networks show high promise as a conductive material due to excellent flexibility, low resistance, high transparency, and ease of large-scale preparation. However, the application of AgNW networks has been hindered by their inherent characteristics, such as easy oxidation degradation, chemical corrosion, and structural instability at high temperatures. In this study, a dense SiOx protective layer derived from perhydropolysilazane was introduced to fabricate a robust SiOx/AgNW nanocomposite coating through an all-solution process at room temperature. The achieved nanocomposite coating shows outstanding thermal stability up to 450 °C, resistance to ultraviolet radiation, and excellent mechanical performance by maintaining stability after 10,000 cycles of bending at a radius of 2.5 mm, 1000 cycles of peeling, and 1200 cycles of wearing. Meanwhile, the nanocomposite coating demonstrates exceptional chemical tolerance against HCl, Na2S, and organic solvents. A transparent heater based on the nanocomposite coating achieves a remarkable benchmark with a maximum temperature of 400 °C at 20 V. These features highlight the potential of the nanocomposite coating in flexible electronics, optoelectronics, touch screens, and high-performance heaters.
Collapse
Affiliation(s)
- Pengfei Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic China
| | - Xu Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic China
| | - Guifen Gong
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic China
| | - Caihong Xu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100149, People's Republic of China
| | - Zongbo Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
3
|
Wang X, Song C, Wang Y, Feng S, Xu D, Hao T, Xu H. Flexible Transparent Films of Oriented Silver Nanowires for a Stretchable Strain Sensor. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4059. [PMID: 39203237 PMCID: PMC11355971 DOI: 10.3390/ma17164059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
The potential applications of stretchable strain sensors in wearable electronics have garnered significant attention. However, developing susceptible stretchable strain sensors for practical applications still poses a considerable challenge. The present study introduces a stretchable strain sensor that utilizes silver nanowires (AgNWs) embedded into a polydimethylsiloxane (PDMS) substrate. The AgNWs have high flexibility and electrical conductivity. A stretchable AgNW/Pat-PDMS conductive film was prepared by arranging nanowires on the surface of PDMS using a simple rod coating method. Depending on the orientation angle, the overlap area between nanowires varies, resulting in different levels of separation under a given strain. Due to the separation of the nanowire and the change in current path geometry, the variation in strain resistance of the sensor can be primarily attributed to these factors. Therefore, precision in strain regulation can be adjusted by altering the angle θ (0°, 60°, or 90°) of the nanowire. At the same time, the stability of the AgNW/Pattern-PDMS (AgNW/Pat-PDMS) conductive film application was verified by preparing a sandwich structure PDMS/AgNW/Pat-PDMS stretchable strain sensor. The sensor exhibited high sensitivity within the operating sensing range (gauge factor (GF) of 15 within ~120% strain), superior durability (20,000 bending cycles and 5000 stretching cycles), and excellent response toward bending.
Collapse
Affiliation(s)
- Xiaoguang Wang
- China Electronic Technology Group Corp 49th Research Institute, Harbin 150001, China; (X.W.); (C.S.); (Y.W.); (S.F.); (D.X.)
| | - Chengjun Song
- China Electronic Technology Group Corp 49th Research Institute, Harbin 150001, China; (X.W.); (C.S.); (Y.W.); (S.F.); (D.X.)
| | - Yangyang Wang
- China Electronic Technology Group Corp 49th Research Institute, Harbin 150001, China; (X.W.); (C.S.); (Y.W.); (S.F.); (D.X.)
| | - Shaoxuan Feng
- China Electronic Technology Group Corp 49th Research Institute, Harbin 150001, China; (X.W.); (C.S.); (Y.W.); (S.F.); (D.X.)
| | - Dong Xu
- China Electronic Technology Group Corp 49th Research Institute, Harbin 150001, China; (X.W.); (C.S.); (Y.W.); (S.F.); (D.X.)
| | - Tingting Hao
- China Electronic Technology Group Corp 49th Research Institute, Harbin 150001, China; (X.W.); (C.S.); (Y.W.); (S.F.); (D.X.)
| | - Hongbo Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Hao T, Ji H, Xu D, Liu D, Ren Z, Liu W, Zhang Y, Sun J, Zhao J, Zhang L, Li Y. Capillary Force-Induced Graphene Spontaneous Transfer and Encapsulation of Silver Nanowires for Highly-Stable Transparent Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40199-40209. [PMID: 39029113 DOI: 10.1021/acsami.4c06315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Silver nanowires (NWs) (AgNWs) have emerged as the most promising conductive materials in flexible optoelectronic devices owing to their excellent photoelectric properties and mechanical flexibility. It is widely acknowledged that the practical application of AgNW networks faces challenges, such as high surface roughness, poor substrate adhesion, and limited stability. Encapsulating AgNW networks with graphene has been recognized as a viable strategy to tackle these issues. However, conventional methods like self-assembly reduction-oxidation or chemical vapor deposition often yield graphene protective layers with inherent defects. Here, we propose a novel one-step hot-pressing method containing ethanol solution that combines the spontaneous transfer and encapsulation process of rGO films onto the surface of the AgNWs network, enabling the preparation of flexible rGO/AgNWs/PET (reduced graphene oxide/silver NWs/polyethylene terephthalate) electrodes. The composite electrode exhibits outstanding photoelectric properties (T ≈ 88%, R ≈ 6 Ω sq-1) and possesses a smooth surface, primarily attributed to the capillary force generated by ethanol evaporation, ensuring the integrity of the rGO delamination process on the original substrate. The capillary force simultaneously promotes the tight encapsulation of rGO and AgNWs, as well as the welding of the AgNWs junction, thereby enhancing the mechanical stability (20,000 bending cycles and 100 cycles of taping tests), thermal stability (∼30 °C and ∼25% humidity for 150 days), and environmental adaptability (100 days of chemical attack) of the electrode. The electrode's practical feasibility has been validated by its exceptional flexibility and cycle stability (95 and 98% retention after 5000 bending cycles and 12,000 s long-term cycles) in flexible electrochromic devices.
Collapse
Affiliation(s)
- Tingting Hao
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, PR China
- China Electronic Technology Group Corporation 49th Research Institute, Harbin 150001, PR China
| | - Haoyu Ji
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Dong Xu
- China Electronic Technology Group Corporation 49th Research Institute, Harbin 150001, PR China
| | - Dongqi Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Zichen Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yike Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jiawu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jiupeng Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Leipeng Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
5
|
Khan A, Faceira B, Bardet L, Sanchez-Velasquez C, Nayak SS, Jiménez C, Muñoz-Rojas D, Rougier A, Bellet D. Silver Nanowire-Based Transparent Electrodes for V 2O 5 Thin Films with Electrochromic Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10439-10449. [PMID: 38380672 DOI: 10.1021/acsami.3c14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The development of electrochromic systems, known for the modulation of their optical properties under an applied voltage, depends on the replacement of the state-of-the-art ITO (In2O3:Sn) transparent electrode (TE) as well as the improvement of electrochromic films. This study presents an innovative ITO-free electrochromic film architecture utilizing oxide-coated silver nanowire (AgNW) networks as a TE and V2O5 as an electrochromic oxide layer. The TE was prepared by simple spray deposition of AgNWs that allowed for tuning different densities of the network and hence the resistance and transparency of the film. The conformal oxide coating (SnO2 or ZnO) on AgNWs was deposited by atmospheric-pressure spatial atomic layer deposition, an open-air fast and scalable process yielding a highly stable electrode. V2O5 thin films were then deposited by radio frequency magnetron sputtering on the AgNW-based TE. Independent of the oxide's nature, a 20 nm protective layer thickness was insufficient to prevent the deterioration of the AgNW network during V2O5 deposition. On the contrary, crystalline V2O5 films were grown on 30 nm thick ZnO or SnO2-coated AgNWs, exhibiting a typical orange color. Electrochromic characterization demonstrated that only V2O5 films deposited on 30 nm thick SnO2-coated AgNW showed characteristic oxidation-reduction peaks in the Li+-based liquid electrolyte associated with a reversible orange-to-blue color switch for at least 500 cycles. The electrochromic key properties of AgNW/SnO2 (30 nm)/V2O5 films are discussed in terms of structural and morphological changes due to the AgNW network and the nature and thickness of the two protective oxide coatings.
Collapse
Affiliation(s)
- Ambreen Khan
- CNRS, Grenoble INP, LMGP, Univ. Grenoble Alpes, 38000 Grenoble, France
- CNRS, Bordeaux INP, ICMCB, UMR 5026, Univ. Bordeaux, F-33600 Pessac, France
| | - Brandon Faceira
- CNRS, Bordeaux INP, ICMCB, UMR 5026, Univ. Bordeaux, F-33600 Pessac, France
| | - Laetitia Bardet
- CNRS, Grenoble INP, LMGP, Univ. Grenoble Alpes, 38000 Grenoble, France
| | | | - Suraj S Nayak
- CNRS, Grenoble INP, LMGP, Univ. Grenoble Alpes, 38000 Grenoble, France
- CNRS, Bordeaux INP, ICMCB, UMR 5026, Univ. Bordeaux, F-33600 Pessac, France
| | - Carmen Jiménez
- CNRS, Grenoble INP, LMGP, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - David Muñoz-Rojas
- CNRS, Grenoble INP, LMGP, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Aline Rougier
- CNRS, Bordeaux INP, ICMCB, UMR 5026, Univ. Bordeaux, F-33600 Pessac, France
| | - Daniel Bellet
- CNRS, Grenoble INP, LMGP, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
6
|
Hao T, Zhang L, Ji H, Zhou Q, Feng T, Song S, Wang B, Liu D, Ren Z, Liu W, Zhang Y, Sun J, Li Y. A Stretchable, Transparent, and Mechanically Robust Silver Nanowire-Polydimethylsiloxane Electrode for Electrochromic Devices. Polymers (Basel) 2023; 15:2640. [PMID: 37376285 DOI: 10.3390/polym15122640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The application of flexible indium tin oxide (ITO-free) electrochromic devices has steadily attracted widespread attention in wearable devices. Recently, silver nanowire/poly(dimethylsiloxane) (AgNW/PDMS)-based stretchable conductive films have raised great interest as ITO-free substrate for flexible electrochromic devices. However, it is still difficult to achieve high transparency with low resistance due to the weak binding force between AgNW and PDMS with low surface energy because of the possibility of detaching and sliding occurring at the interface. Herein, we propose a method to pattern the pre-cured PDMS (PT-PDMS) by stainless steel film as a template through constructed micron grooves and embedded structure, to prepare a stretchable AgNW/PT-PDMS electrode with high transparency and high conductivity. The stretchable AgNW/PT-PDMS electrode can be stretched (5000 cycles), twisted, and surface friction (3M tape for 500 cycles) without significant loss of conductivity (ΔR/R ≈ 16% and 27%). In addition, with the increase of stretch (stretching to 10-80%), the AgNW/PT-PDMS electrode transmittance increased, and the conductivity increased at first and then decreased. It is possible that the AgNWs in the micron grooves are spread during PDMS stretching, resulting in a larger spreading area and higher transmittance of the AgNWs film; at the same time, the nanowires between the grooves come into contact, thus increasing conductivity. An electrochromic electrode constructed with the stretchable AgNW/PT-PDMS exhibited excellent electrochromic behavior (transmittance contrast from ~61% to ~57%) even after 10,000 bending cycles or 500 stretching cycles, indicating high stability and mechanical robustness. Notably, this method of preparing transparent stretch electrodes based on patterned PDMS provides a promising solution for developing electronic devices with unique structures and high performance.
Collapse
Affiliation(s)
- Tingting Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Leipeng Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
- Infrared and Low Temperature Plasma Key Laboratory of Anhui Province, NUDT, Hefei 230037, China
| | - Haoyu Ji
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qiyu Zhou
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Ting Feng
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shanshan Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Wang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Dongqi Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zichen Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yike Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Jiawu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
Li X, Guo Y, Zhang M, Zhang C, Niu R, Ma H, Sun Y. Colorable Light-Scattering Device Based on Polymer-Stabilized Ion-Doped Cholesteric Liquid Crystal and an Electrochromatic Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7184-7195. [PMID: 36701765 DOI: 10.1021/acsami.2c17770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bistable polymer-stabilized cholesteric liquid crystal (LC) devices have been extensively researched due to their energy-saving benefits. Compared to devices with merely transparent and light-scattering states, LC devices with controlled light absorption or changeable color functions are unquestionably more intriguing. In this paper, a polymer-stabilized ion-doped cholesteric LC and an electrochromic layer are used to fabricate a colorable device which can show four operating states: transparent, light-scattering, colored transparent, and colored light-scattering. The working principle and fabrication strategy are explained in detail. Based on the dielectric response of LC, the electrohydrodynamic effect of ion-doped LC, and the redox reaction of electrochromic materials, the transparent or light-scattering state and the colored or colorless state of the device can be regulated by controlling the alternating frequency and the direction of the electric field. The display performance related to the monomer, chiral dopant, and electrochromic layer is investigated. The content of monomer and chiral dopant affects the polymer network and pitch of cholesteric LC, which then affects the driving voltages and contrast ratio. The thickness of the electrochromic layer has a significant impact on the transmittance of the device's coloring and fading states. The sample with excellent operating states is obtained by optimizing the material and the construction, which can be widely applied in smart windows and energy-saving display devices.
Collapse
Affiliation(s)
- Xiaoshuai Li
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yuqiang Guo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, PR China
| | - Meishan Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Chi Zhang
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Rui Niu
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hongmei Ma
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Yubao Sun
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
8
|
Synthesis of high purity silver nanowires through a silver chloride-mediated polyol method. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Wu L, Guo Y, Kuang G, Wang Y, Liu H, Kang Y, Ma T, Tao Y, Huang K, Zhang S. Synthesis and electrochromic properties of all donor polymers containing fused thienothiophene derivatives with high contrast and color efficiency. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|