1
|
Zhang C, Hao Y, Lu X, Su W, Zhang H, Wang ZL, Li X. Advances in TENGs for Marine Energy Harvesting and In Situ Electrochemistry. NANO-MICRO LETTERS 2025; 17:124. [PMID: 39888455 PMCID: PMC11785903 DOI: 10.1007/s40820-024-01640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans. As a burgeoning technological method for electromechanical conversion, triboelectric nanogenerator (TENG) has significant advantages in marine energy for its low weight, cost-effectiveness, and high efficiency in low-frequency range. It can realize the efficient and economical harvesting of low-frequency blue energy by constructing the floating marine energy harvesting TENG. This paper firstly introduces the power transfer process and structural composition of TENG for marine energy harvesting in detail. In addition, the latest research works of TENG on marine energy harvesting in basic research and structural design are systematically reviewed by category. Finally, the advanced research progress in the power take-off types and engineering study of TENG with the marine energy are comprehensively generalized. Importantly, the challenges and problems faced by TENG in marine energy and in situ electrochemical application are summarized and the corresponding prospects and suggestions are proposed for the subsequent development direction and prospects to look forward to promoting the commercialization process of this field.
Collapse
Affiliation(s)
- Chuguo Zhang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Yijun Hao
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xiangqian Lu
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Wei Su
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Hongke Zhang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing, 100190, People's Republic of China.
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
| | - Xiuhan Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| |
Collapse
|
2
|
Wang Q, Yu G, Lou Y, Li M, Hu J, Li J, Cui W, Yu A, Zhai J. Elastic Self-Recovering Hybrid Nanogenerator for Water Wave Energy Harvesting and Marine Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:3770. [PMID: 38931554 PMCID: PMC11207515 DOI: 10.3390/s24123770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
To achieve large-scale development of triboelectric nanogenerators (TENGs) for water wave energy harvesting and powering the colossal sensors widely distributed in the ocean, facile and scalable TENGs with high output are urgently required. Here, an elastic self-recovering hybrid nanogenerator (ES-HNG) is proposed for water wave energy harvesting and marine environmental monitoring. The elastic skeletal support of the ES-HNG is manufactured using three-dimensional (3D) printing technology, which is more conducive to the large-scale integration of the ES-HNG. Moreover, the combination of a TENG and an electromagnetic generator (EMG) optimizes the utilization of device space, leading to enhanced energy harvesting efficiency. Experimental results demonstrate that the TENG achieves a peak power output of 42.68 mW, and the EMG reaches a peak power output of 4.40 mW. Furthermore, various marine environment monitoring sensors, such as a self-powered wireless meteorological monitoring system, a wireless alarm system, and a water quality monitoring pen, have been successfully powered by the sophisticated ES-HNG. This work introduces an ES-HNG for water wave energy harvesting, which demonstrates potential in marine environment monitoring and offers a new solution for the sustainable development of the marine internet of things.
Collapse
Affiliation(s)
- Qiuxiang Wang
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gao Yu
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Ying Lou
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Mengfan Li
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jiaxi Hu
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jiaodi Li
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Weiqi Cui
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Aifang Yu
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyi Zhai
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Feng J, Zhou H, Cao Z, Zhang E, Xu S, Li W, Yao H, Wan L, Liu G. 0.5 m Triboelectric Nanogenerator for Efficient Blue Energy Harvesting of All-Sea Areas. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204407. [PMID: 36253135 PMCID: PMC9762320 DOI: 10.1002/advs.202204407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Indexed: 06/13/2023]
Abstract
Triboelectric nanogenerators (TENGs) to harvest ocean wave blue energy is flourishing, yet the research horizon has been limited to centimeter-level TENG. Here, for the first time, a TENG shell is advanced for ocean energy harvesting to 0.5 m and an excellent frictional areal density of 1.03 cm-1 and economies of scale are obtained. The unique structure of the multi-arch shape is adopted to untie the difficulty of fully getting the extensive friction layer contact. An inside steel plate is vertically placed in the center of every TENG block, which can activate the TENG to achieve complete contact even at a tilt angle of 7 degrees. The proposed half-meter TENG (HM-TENG) has a broad response band from 0.1 to 2 Hz, a total transferred charge quantity up to 67.2 µC, and one single TENG can deliver an open-circuit voltage of 368 V. Coupled with the self-stabilizing and susceptible features the ellipsoid shell brings, the HM-TENG can readily accommodate itself to the all-weather, all-sea wave energy harvesting. Muchmore, the HM-TENG is also applied to RF signal transmitters. This work takes the first step toward near-meter-scale enclosures and provides a new direction for large-scale wave energy harvesting.
Collapse
Affiliation(s)
- Junrui Feng
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004P. R. China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Hanlin Zhou
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004P. R. China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Zhi Cao
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004P. R. China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Enyang Zhang
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004P. R. China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Shuxing Xu
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004P. R. China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Wangtao Li
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004P. R. China
| | - Huilu Yao
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004P. R. China
| | - Linyu Wan
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004P. R. China
| | - Guanlin Liu
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|