1
|
Zhang Q, Zhou J, Kao CW, Gao S, Li J, Lu YR, Yuan D, Palaniyandy N, Tan Y. Interfacial Electronic Interactions Induced by Self-Assembled Amorphous RuCo Bimetallenes/MXene Heterostructures for Nitrate Electroreduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502635. [PMID: 40351078 DOI: 10.1002/smll.202502635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Electrocatalytic nitrate reduction to ammonia (NO3RR) is an attractive green route to generate valuable ammonia and remove nitrates in industrial processes. However, under the intense competition of hydrogen evolution reactions (HER), it is a key challenge to improve the selectivity and reduce the energy consumption of the nitrate reduction reaction. Herein, a unique amorphous RuCo Bimetallenes confined on Ti3C2Tx-MXene (RuCo/Ti3C2Tx) is reported as a highly efficient NO3RR catalyst, showing a remarkable Faradaic efficiency for ammonia of 94.7% at -0.2 V versus reversible hydrogen electrode (RHE), with the corresponding high ammonia yield rate of 98.8 mg h-1 mgcat -1 at -0.6 V versus RHE. Significantly, the RuCo/Ti3C2Tx heterostructures are able to operate stably at 1 A cm-2 for over 100 h under membrane electrode assembly (MEA) conditions with a stabilized NH3 Faraday efficiency. In-depth theoretical and operando spectroscopic investigations unveil that the in situ generation of heterojunction via interfacial Ru/Co─O bridges can induce charge redistribution through Ru/Co─O-Ti structure and modulate the electronic structure of RuCo Bimetallenes, significantly promoting *H production and the adsorption and activation of reactants/intermediates, while suppressing HER, thereby boosting NO3RR performance. This study offers a new insight the metal-support interaction for the development of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Qi Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jing Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Shanqiang Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jilong Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Dingwang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Nithyadharseni Palaniyandy
- Institute for Catalysis and Energy Solutions (ICES), College of Science, Engineering, and Technology (CSET), University of South Africa, Florida Science Campus, Roodepoort, 1709, South Africa
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
2
|
Zheng J, Liu S, Xiang L, Kuang J, Guo J, Wang L, Li N. Constructing a interfacial electric field for efficient reduction of nitrogen to ammonia. J Colloid Interface Sci 2024; 667:460-469. [PMID: 38643743 DOI: 10.1016/j.jcis.2024.04.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Electrochemical nitrogen reduction (eNRR) is a cost-effective and environmentally sustainable approach for ammonia production. MoS2, as a typical layered transition metal compound, holds significant potential as an electrocatalyst for the eNRR. Nevertheless, it suffers from a limited number of active sites and low electron transfer efficiency. In this study, we constructed a heterostructure by depositing SnO2 (an n-type semiconductor) nanoparticles on MoS2 (a p-type semiconductor). This unique interfacial structure not only generates abundant interfacial contacts but also facilitates the transfer of electrons from SnO2 to MoS2, leading to the formation of an interfacial electric field. Theoretical calculations demonstrate that this electric field increases the number of active electrons, facilitating N2 adsorption and NN bond activation. Moreover, it increases the degree of orbital overlap between N2 and SnO2/MoS2, effectively reducing the energy barrier of the rate-determining step. Benefiting from the interfacial electric field effect, the SnO2/MoS2 catalyst exhibits significant catalytic activity and selectivity towards eNRR, with an ammonia yield of 47.1 µg h-1 mg-1 and a Faraday efficiency of 19.3 %, surpassing those reported for the majority of MoS2- and SnO2-based catalysts.
Collapse
Affiliation(s)
- Jiaqi Zheng
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University 2699 Qianjin Street, Changchun 130012, PR China
| | - Shihan Liu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University 2699 Qianjin Street, Changchun 130012, PR China
| | - Lijuan Xiang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University 2699 Qianjin Street, Changchun 130012, PR China
| | - Junda Kuang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University 2699 Qianjin Street, Changchun 130012, PR China
| | - Jing Guo
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University 2699 Qianjin Street, Changchun 130012, PR China
| | - Lin Wang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University 2699 Qianjin Street, Changchun 130012, PR China
| | - Nan Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
3
|
Yu Y, Wei X, Chen W, Qian G, Chen C, Wang S, Min D. Design of Single-Atom Catalysts for E lectrocatalytic Nitrogen Fixation. CHEMSUSCHEM 2024; 17:e202301105. [PMID: 37985420 DOI: 10.1002/cssc.202301105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The Electrochemical nitrogen reduction reaction (ENRR) can be used to solve environmental problems as well as energy shortage. However, ENRR still faces the problems of low NH3 yield and low selectivity. The NH3 yield and selectivity in ENRR are affected by multiple factors such as electrolytic cells, electrolytes, and catalysts, etc. Among these catalysts are at the core of ENRR research. Single-atom catalysts (SACs) with intrinsic activity have become an emerging technology for numerous energy regeneration, including ENRR. In particular, regulating the microenvironment of SACs (hydrogen evolution reaction inhibition, carrier engineering, metal-carrier interaction, etc.) can break through the limitation of intrinsic activity of SACs. Therefore, this Review first introduces the basic principles of NRR and outlines the key factors affecting ENRR. Then a comprehensive summary is given of the progress of SACs (precious metals, non-precious metals, non-metallic) and diatomic catalysts (DACs) in ENRR. The impact of SACs microenvironmental regulation on ENRR is highlighted. Finally, further research directions for SACs in ENRR are discussed.
Collapse
Affiliation(s)
- Yuanyuan Yu
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Xiaoxiao Wei
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Wangqian Chen
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Guangfu Qian
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| |
Collapse
|
4
|
Zhang G, Zhang N, Chen K, Zhao X, Chu K. Atomically Mo-Doped SnO 2-x for efficient nitrate electroreduction to ammonia. J Colloid Interface Sci 2023; 649:724-730. [PMID: 37385037 DOI: 10.1016/j.jcis.2023.06.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Electrochemical NO3--to-NH3 reduction (NO3RR) emerges as an appealing strategy to alleviate contaminated NO3- and generate valuable NH3 simultaneously. However, substantial research efforts are still needed to advance the development of efficient NO3RR catalysts. Herein, atomically Mo-doped SnO2-x with enriched O-vacancies (Mo-SnO2-x) is reported as a high-efficiency NO3RR catalyst, delivering the highest NH3-Faradaic efficiency of 95.5% with a corresponding NH3 yield rate of 5.3 mg h-1 cm-2 at -0.7 V (RHE). Experimental and theoretical investigations reveal that d-p coupled Mo-Sn pairs constructed on Mo-SnO2-x can synergistically enhance the electron transfer efficiency, activate the NO3- and reduce the protonation barrier of rate-determining step (*NO→*NOH), thereby drastically boosting the NO3RR kinetics and energetics.
Collapse
Affiliation(s)
- Guike Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Nana Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaolin Zhao
- National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, Beijing, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Thapa L, Retna Raj C. Nitrogen Electrocatalysis: Electrolyte Engineering Strategies to Boost Faradaic Efficiency. CHEMSUSCHEM 2023; 16:e202300465. [PMID: 37401159 DOI: 10.1002/cssc.202300465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
The electrochemical activation of dinitrogen at ambient temperature and pressure for the synthesis of ammonia has drawn increasing attention. The faradaic efficiency (FE) as well as ammonia yield in the electrochemical synthesis is far from reaching the requirement of industrial-scale production. In aqueous electrolytes, the competing electron-consuming hydrogen evolution reaction (HER) and poor solubility of nitrogen are the two major bottlenecks. As the electrochemical reduction of nitrogen involves proton-coupled electron transfer reaction, rationally engineered electrolytes are required to boost FE and ammonia yield. In this Review, we comprehensively summarize various electrolyte engineering strategies to boost the FE in aqueous and non-aqueous medium and suggest possible approaches to further improve the performance. In aqueous medium, the performance can be improved by altering the electrolyte pH, transport velocity of protons, and water activity. Other strategies involve the use of hybrid and water-in-salt electrolytes, ionic liquids, and non-aqueous electrolytes. Existing aqueous electrolytes are not ideal for industrial-scale production. Suppression of HER and enhanced nitrogen solubility have been observed with hybrid and non-aqueous electrolytes. The engineered electrolytes are very promising though the electrochemical activation has several challenges. The outcome of lithium-mediated nitrogen reduction reaction with engineered non-aqueous electrolyte is highly encouraging.
Collapse
Affiliation(s)
- Loknath Thapa
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
6
|
Recent Progress in Pd based Electrocatalysts for Electrochemical Nitrogen Reduction to Ammonia. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|