1
|
Sun MN, Chen WY, Wang L, Wang ZG, Qin L, Xie XM. Highly Conductive Ionohydrogels for Humidity Sensing. Polymers (Basel) 2025; 17:327. [PMID: 39940529 PMCID: PMC11820054 DOI: 10.3390/polym17030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Polymeric hydrogel materials have excellent electrical conductivity and mechanical properties and will be potentially used in wearable electronic devices, soft robotics, and medical treatment. In this paper, a PAA-Fe3+-IL ionohydrogel (poly(acrylic acid)-Fe3+-ionic liquid ionohydrogel) with excellent mechanical and conductive properties is prepared by simple free radical polymerization. The presence of metal-ligand crosslinking within the ionohydrogel improves the mechanical properties of the hydrogel. When the IL content is 10 wt%, it has the maximum tensile strength and strain. When the ferric ion concentration is 0.3 mol%, the maximum tensile strength is 495.09 kPa. When the ferric ion concentration is 0.1 mol%, the maximum strain is 1151.35%. The tensile behavior of the ionohydrogels is quantitatively analyzed by the viscoelastic model. In addition, free metal ions and anions and cations in IL endowed the hydrogel with a conductivity of 1.48 S/m and a strain sensitivity of 8.04. Thus, the PAA-Fe3+-IL ionohydrogel can be successfully used as a humidity sensor due to the hydrophilic ionic liquid, which can increase the conductivity of the hydrogel by absorbing water. The physical crosslinking density inside the hydrogel is much higher than the chemical crosslinking density, which causes hydrogel dissolution in deionized water by swelling and is conducive to the recycling of the hydrogel. This is a promising material for use in intelligent wearable electronics and as a humidity sensor.
Collapse
Affiliation(s)
- Min-Na Sun
- Beijing Key Laboratory for Sensors, Beijing Information Science and Technology University, Beijing 100192, China; (M.-N.S.); (W.-Y.C.)
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China
| | - Wen-Yu Chen
- Beijing Key Laboratory for Sensors, Beijing Information Science and Technology University, Beijing 100192, China; (M.-N.S.); (W.-Y.C.)
| | - Li Wang
- China Mobile Park Construction and Development Co. Ltd., Beijing 102200, China
| | - Zhi-Gang Wang
- China Mobile Park Construction and Development Co. Ltd., Beijing 102200, China
| | - Lei Qin
- Beijing Key Laboratory for Sensors, Beijing Information Science and Technology University, Beijing 100192, China; (M.-N.S.); (W.-Y.C.)
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xu-Ming Xie
- Key Laboratory of Advanced Materials of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Zhou X, Liu X, Yu X, Liu Q, Bai T, Gao M, Xu C, Zhang X, Zhu M, Cheng Y. Hybrid Water-Harvesting Channels Delivering Wide-Range and Supersensitive Passive Fluorescence Humidity Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27794-27803. [PMID: 38748448 DOI: 10.1021/acsami.4c05437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The development of optical humidity detection has been of considerable interest in highly integrated wearable electronics and packaged equipment. However, improving their capacities for color recognition at ultralow humidity and response-recovery rate remains a significant challenge. Herein, we propose a type of hybrid water-harvesting channel to construct brand-new passive fluorescence humidity sensors (PFHSs). Specifically, the hybrid water-harvesting channels involve porous metal-organic frameworks and a hydrophilic poly(acrylic acid) network that can capture water vapors from the ambient environment even at ultralow humidity, into which polar-responsive aggregation-induced emission molecules are doped to impart humidity-sensitive luminescence colors. As a result, the PFHSs exhibit clearly defined fluorescence signals within 0-98% RH coupling with desirable performances such as a fast response rate, precise quantitative feedback, and durable reversibility. Given the flexible processability of this system, we further upgrade the porous structure via electrostatic spinning to furnish a kind of Nano-PFHSs, demonstrating an impressive response time (<100 ms). Finally, we validate the promising applications of these sensors in electronic humidity monitoring and successfully fabricate a portable and rapid humidity indicator card.
Collapse
Affiliation(s)
- Xuyang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tianxiang Bai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Hong Q, Zhao L, Lin F, Tan N, You X, Lu B, Huang B, Lv J, Chen Y, Tang L. Synthesis of Guanine/Vermiculite Two-Dimensional Nanocomposites for Wireless Humidity Sensing in Nut Storage Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58734-58745. [PMID: 38055937 DOI: 10.1021/acsami.3c13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Two-dimensional (2D) nanostructures have the advantages of high specific surface area, easy surface functionalization, abundant active sites, and good compatibility with device integration and can be assembled into three-dimensional structures, which are key to the development of high-performance gas sensors. In this study, 2D vermiculite (VMT) nanosheets and guanine (G), two renewable resources with unique chemical structures, were organically combined to fully use the specificity of their molecular structures and functional activities. Driven by the regulation of 2D VMT nanosheets, guanine/vermiculite (G/VMT)-based 2D nanocomposites with controllable pore structure, multiple binding sites, and unobstructed mass transfer were designed and synthesized. The G/VMT nanocomposite material was used as a quartz crystal microbalance (QCM) electrode-sensitive film material to build a QCM-based humidity sensor. G/VMT-based QCM humidity sensor had good logarithmic linear relation (0.9971), high sensitivity (24.49 Hz/% relative humidity), low hysteresis (1.75% RH), fast response/recovery time (39/6 s), and good stability. Furthermore, with a QCM sensor and a specially designed wireless circuit, a wireless humidity detection system transmitting via Wi-Fi allows real-time monitoring of nut storage. This study presents an environmentally friendly, high-performance, miniature 2D nanocomposite sensor strategy for real-time monitoring.
Collapse
Affiliation(s)
- Qiqi Hong
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Lan Zhao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Fengcai Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fujian 350108, China
| | - Ningning Tan
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Xinda You
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Beili Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Biao Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Jianhua Lv
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Yandan Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Lirong Tang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| |
Collapse
|
4
|
Yang J, Wang H, Huang W, Peng K, Shi R, Tian W, Lin L, Yuan J, Yao W, Ma X, Chen Y. A natural polymer-based hydrogel with shape controllability and high toughness and its application to efficient osteochondral regeneration. MATERIALS HORIZONS 2023; 10:3797-3806. [PMID: 37416948 DOI: 10.1039/d3mh00544e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Hydrogels prepared from sustainable natural polymers have broad prospects in the biological field. However, their poor mechanical properties and challenges in achieving shape control have limited their application. Herein, a novel preforming dual-effect post-enhancing method is proposed to address these issues. The method utilizes the hydrogen bonding of agar to obtain a shape-controllable preformed hydrogel at low polymer concentrations using casting, injection, or 3D printing techniques. Subsequently, the preformed hydrogel was subjected to a permeation process to form a post-enhanced multi-network (PEMN) hydrogel with hierarchical chain entanglements to ensure its high toughness, which exhibits tensile and compressive strengths of up to 0.51 MPa and 1.26 MPa with solely physically crosslinking networks. The excellent biocompatibility of the PEMN hydrogel prepared without the need for additional initiator agents under mild conditions was confirmed by both in vitro and in vivo experiments. Furthermore, the adaptability for irregular defects, suitable toughness, adhesive properties, and degradability of PEMN hydrogels are beneficial to provide mechanical support, induce endogenous cell mineralization, and accelerate the regeneration of cartilage and subchondral bone with more than 40% bone regeneration in 12 weeks. Our work has provided a novel solution to simultaneously achieve shape controllability and high toughness based on natural polymers among the already well-explored strategies for osteochondral regeneration.
Collapse
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Hui Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Weiting Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Kelin Peng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Rui Shi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Wei Tian
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lizhi Lin
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 10081, China
| | - Jingjing Yuan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Weishang Yao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xilan Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 10081, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| |
Collapse
|
5
|
Yang X, Zhang B, Li J, Shen M, Liu H, Xu X, Shang S. Self-healing, self-adhesive, and stretchable conductive hydrogel for multifunctional sensor prepared by catechol modified nanocellulose stabilized poly(α-thioctic acid). Carbohydr Polym 2023; 313:120813. [PMID: 37182943 DOI: 10.1016/j.carbpol.2023.120813] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Self-healing, self-adhesive, and stretchable bio-based conductive hydrogels exhibit properties similar to those of biological tissues, making them an urgent requirement for emerging wearable devices. The primary challenge lies in devising straightforward strategies to accomplish all the aforementioned performances and achieve equilibrium among them. This study used the natural compound thioctic acid (TA) and modified cellulose to prepare conductive hydrogels with stretchability, healing, and self-adhesion through a simple one-step strategy. Metastable poly(TA) was obtained through ring-opening polymerization of lithiated TA, followed by the introduction of dopamine-grafted cellulose nanofibers (DCNF) to stabilize poly(TA) and prepare PTALi/DCNF hydrogels with the aforementioned properties. The hydrogels demonstrated remarkable conductivity, attributed to the existence of Li + ions, with a maximum conductivity of 17.36 mS/cm. The self-healing capacity of the hydrogels was achieved owing to the presence of disulfide bond in TA. The introduction of DCNF can effectively stabilize poly(TA), endow the hydrogel with self-adhesion ability, improve the mechanical properties, and further enhance the formability of hydrogels. Generally, bio-based PTALi/DCNF hydrogels with stretchability, self-healing, self-adhesion, and conductivity are obtained through a simple strategy and used as a sensor with a wide response range and high sensitivity. Hydrogels have significant potential for application in wearable electronic devices, electronic skins, and soft robots.
Collapse
Affiliation(s)
- Xinxin Yang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Bowen Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Jingjing Li
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Minggui Shen
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China.
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Xu Xu
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, Jiangsu Province, China.
| | - Shibin Shang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| |
Collapse
|
6
|
Li B, Zhang Y, Wang J, Yan B, Liang J, Dong Y, Zhou Q. Fast and Reversibly Humidity-Responsive Fluorescence Based on AIEgen Proton Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49119-49127. [PMID: 36256864 DOI: 10.1021/acsami.2c13652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The construction of humidity-responsive fluorescent materials with reversibility, specificity, and sensitivity is of great importance for the development of information encryption, fluorescence patterning, and sensors. Nevertheless, to date, the application of these materials has been limited by their slow response rate and nonspecificity. Herein, a humidity-responsive fluorescence system was designed and assembled to achieve a rapid, reversible, and specific moisture response. The system comprised tetra-(4-pyridylphenyl)ethylene (TPE-4Py) as a fluorescent proton acceptor with an aggregation-induced emission (AIE) effect and poly(acrylic acid) (PAA) as a proton donor with an efficient moisture-capturing ability. The fluorescence color and intensity rapidly changed with increasing relative humidity (RH) because of TPE-4Py protonation, and TPE-4Py deprotonation resulted in recovery of the original fluorescence color in low-humidity environments. The proton transfer between the pyridyl group in TPE-4Py and the carboxyl group in PAA was reversible and chemically stable, and the humidity-responsive fluorescence system showed a high response/recovery speed, an obvious color change, good reversibility, and an outstanding specific moisture response. Because of these advantages, diverse applications of this humidity-responsive fluorescence system in transient fluorescent patterning and the encryption of information were also developed and demonstrated.
Collapse
Affiliation(s)
- Botian Li
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Yichi Zhang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Jian Wang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Bo Yan
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Jundang Liang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiong Zhou
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
7
|
Tang F, Li Y, Zeng B, Liu G, Zhao J, Chen L. Lamellar Nanocomposite Based on a 1D Crayfish-like Ce III-Substituted Phospho(III)tungstate Semiconductor and Polyaniline Used as a High-Performance Humidity Sensing Device. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48876-48887. [PMID: 36256886 DOI: 10.1021/acsami.2c13998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In order to meet people's demand for intelligent management of daily life and health, manufacturing and developing humidity monitoring equipment with convenience, high sensitivity, easy miniaturization, and low cost is particularly important in the era of rapid development of artificial intelligence and the Internet of Things. Polyaniline (PANI) is an attractive humidity sensing material due to its designable functional properties. However, PANI modified polyoxometalates (POMs) for humidity sensing are still rare. As a proof of concept, a novel moisture sensing composite material was obtained based on PANI and a novel 1D rare-earth-substituted phospho(III)tungstate [H2N(CH3)2]9Na3H6[Ce2(H2O)3W5O13(C2O4)][HPIIIW9O33]2[(HPIII)2W15O54]·42H2O (1). Notably, the anion structure of 1 contains trivacant Keggin-type [B-α-HPIIIW9O33]8- and Dawson-like [(HPIII)2W15O54]10- subunits linked by a heterometallic [Ce2(H2O)3W5O32(C2O4)]30- cluster. Furthermore, the 1/PANI composite shows a typical semiconductive characteristic with a "band-like" conductive mechanism. The fabricated 1/PANI-based humidity sensing device exhibits a broad sensing range (11∼97% relative humidity), fast response/recovery time (3.45 s/3.24 s), good repeatability, and long-term stability (over 3 months). Additionally, the possible sensing mechanism is proposed. This work offers an enormous possibility for the design of high-performance humidity sensing materials through POM material chemistry.
Collapse
Affiliation(s)
- Feng Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
8
|
A Self-Powered PVA-Based Flexible Humidity Sensor with Humidity-Related Voltage Output for Multifunctional Applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
10
|
Sun T, Zhao H, Zhang J, Chen Y, Gao J, Liu L, Niu S, Han Z, Ren L, Lin Q. Degradable Bioinspired Hypersensitive Strain Sensor with High Mechanical Strength Using a Basalt Fiber as a Reinforced Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42723-42733. [PMID: 36073899 DOI: 10.1021/acsami.2c12479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain sensors have received extensive attention due to their broad application prospects. However, a majority of present flexible strain sensors may fail to maintain normal sensing performances upon external loads because of their low strength and thus their performances are affected drastically with increasing loads, which severely restricts large-area popularization and application. Scorpions with hypersensitive vibration slit sensilla are coincident with a similar predicament. Herein, it is revealed that scorpions intelligently use risky slits to detect subtle vibrations, and meanwhile, the distinct layered composites of the main body of this organ prevent catastrophic failure of the sensory structure. Furthermore, the extensive use of flexible sensors will generate a mass of electronic waste just as obsoleting silicon-based devices. Considering mechanical properties and environmental issues, a flexible strain sensor based on an elastomer (Ecoflex)-wrapped fabric with the woven structure was designed and fabricated. Note that introducing a "green" basalt fiber (BF) into a degradable elastomer can effectively avoid environmental issues and significantly enhance the mechanical properties of the sensor. As a result, it shows excellent sensitivity (gauge factor (GF) ∼138.10) and high durability (∼40,000 cycles). Moreover, the reduced graphene oxide (RGO)/BF/Ecoflex flexible strain sensor possesses superior mechanical properties (tensile strength ∼20 MPa) and good flexibility. More significantly, the sensor can maintain normal performances under large external tensions, impact loads, and even underwater environments, providing novel design principles for environmentally friendly flexible sensors under extremely harsh environments.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Houqi Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yu Chen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jiqi Gao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Linpeng Liu
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410012, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Qiao Lin
- Biomedical Microelectromechanical Systems Laboratory, Department of Mechanical Engineering, Columbia University, New York 10027, United States
| |
Collapse
|
11
|
Chen Q, Liu D, Huang XH, Yao Y, Mao KL. Impedance Analysis of Chitin Nanofibers Integrated Bulk Acoustic Wave Humidity Sensor with Asymmetric Electrode Configuration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173035. [PMID: 36080072 PMCID: PMC9457807 DOI: 10.3390/nano12173035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 05/12/2023]
Abstract
This paper fabricated a high-performance chitin nanofibers (ChNFs)-integrated bulk acoustic wave (BAW) humidity sensor with an asymmetric electrode configuration. The ChNFs were successfully prepared from crab shells and used as moisture-sensitive materials to compare the performance of quartz crystal microbalance (QCM) humidity sensors with symmetric and asymmetric electrode structures. The QCM humidity sensor with a smaller electrode area exhibited high sensitivity of 58.84 Hz/%RH, competitive response/recovery time of 30/3.5 s, and low humidity hysteresis of 2.5% RH. However, it is necessary to choose a suitable electrode diameter to balance the stability and sensitivity because the impedance analysis result showed that the reduction of the electrode diameter leads to a sharp decrease in the Q value (stability). Next, the possible humidity-sensitive mechanism of the ChNFs-integrated asymmetric n-m electrode QCM humidity sensor was discussed in detail. Finally, the reasons for the highest sensitivity of the asymmetric n-m electrode QCM humidity sensors having a smaller electrode diameter were analyzed in detail in terms of both mass sensitivity and fringing field effect. This work not only demonstrates that the chitin nanofiber is an excellent potential material for moisture detection, but also provides a new perspective for designing high-performance QCM humidity sensors.
Collapse
Affiliation(s)
| | | | | | - Yao Yao
- Correspondence: (X.-H.H.); (Y.Y.)
| | | |
Collapse
|
12
|
Li X, Guo Y, Meng J, Li X, Li M, Gao D. Self-Powered Carbon Ink/Filter Paper Flexible Humidity Sensor Based on Moisture-Induced Voltage Generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8232-8240. [PMID: 35759371 DOI: 10.1021/acs.langmuir.2c00566] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellulose paper-based materials are highly flexible, hydrophilic, low-cost, and environmentally friendly and are good substrates for use as humidity sensors. Therefore, developing a paper-based humidity sensor with facile fabrication, low cost, and high sensitivity is important for expanding its practical applications. Herein, we propose a CI/FP self-powered humidity sensor based on everyday items such as writing and drawing carbon ink (CI), cellulose filter paper (FP), and polyester conductive adhesive tape, which is fabricated with the help of facile dip-coating and pasting methods. This sensor is self-powered, and the paper-based material itself can absorb water molecules in a humid environment to generate humidity-related voltage and current, which can indirectly reflect the ambient humidity level. They are characterized by a wide relative humidity (RH) sensing range (11-98%), good linearity (R2 = 0.97011), high response voltage (0.19 V), and excellent flexibility (over 1000 bends). This humidity sensor can be successfully applied to monitor human health (breathing, coughing), air humidity, and noncontact humidity sensing (skin, wet objects). This work not only proposes a low-cost and facile method for flexible humidity sensors but also provides a valuable strategy for the development of self-powered wearable electronics.
Collapse
Affiliation(s)
- Xiaoqiang Li
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
- Bosideng International Holding Co., Ltd., Changshu 215532, China
| | - Yuanhao Guo
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianying Meng
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinke Li
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengjuan Li
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Dekang Gao
- Bosideng International Holding Co., Ltd., Changshu 215532, China
| |
Collapse
|