1
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
2
|
Wong KH, Wang Y, Wang X, Yin Y, Feng K, Chen M. Unsaturated fatty acid-doped liposomes deliver piperine to deactivate defensive mechanism for ferroptosis in cancer therapy. J Control Release 2025; 382:113656. [PMID: 40122242 DOI: 10.1016/j.jconrel.2025.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Glutathione peroxidase 4 (GPX4) and dihydroorotate dehydrogenase (DHODH) are two mitochondrial cellular defense systems that operate in parallel to protect against ferroptosis. Simultaneously deactivating both proteins can initiate lipid peroxidation, leading to ferroptosis and subsequent cell death. In this study, we developed a transferrin-modified liposomes (TDPL) doped with unsaturated fatty acid docosahexaenoic acid (DHA) as a lipid peroxidation inducer and encapsulated piperine (PIP) to realize effective anticancer therapy. Specifically, transferrin serves a dual role in this system, acting as both a ligand targeting transferrin receptors and a Fe3+ ionophore. Triggered by the low pH in the lysosome, Fe3+ ions bound to transferrin are released and reduce to Fe2+, which can subsequently catalyze the peroxidation of unsaturated fatty acid. Meanwhile, DHA incorporated into the lipid bilayer of the liposome, can fuse with the cell membrane and deactivate GPX4 and thus inducing lipid peroxidation. Furthermore, PIP functions as a potent DHODH inhibitor. Such combination prevents the detoxification of lipid hydroperoxides by GPX4 and the suppression of lipid peroxyl radical production by DHODH. Collectively, this straightforward system promotes antitumor efficacy of unsaturated fatty acid DHA and drug molecule PIP by inhibiting ferroptosis protection mechanisms to induce lipid peroxidation.
Collapse
Affiliation(s)
- Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Yixuan Wang
- School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xinwei Wang
- School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yuying Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Kun Feng
- School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China.
| |
Collapse
|
3
|
Engelen Y, Demuynck R, Ramon J, Breckpot K, De Smedt S, Lajoinie GPR, Braeckmans K, Krysko DV, Lentacker I. Immunogenic cell death as interplay between physical anticancer modalities and immunotherapy. J Control Release 2025:113721. [PMID: 40368187 DOI: 10.1016/j.jconrel.2025.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Current cancer treatment strategies in practice nowadays often face limitations in effectiveness due to factors such as resistance, recurrence, or suboptimal outcomes. Traditional approaches like chemotherapy often come with severe systemic side effects due to their non-specific action, prompting the development of more targeted therapies. Among these, physical ablation techniques such as radiotherapy (RT) and focused ultrasound (FUS) have gained attention for their ability to precisely target malignant tissues, reduce physical and mental stress for the patients, and minimize recovery time. These therapies also aim to stimulate the immune system through a process referred to as immunogenic cell death (ICD), enhancing the body's ability to fight cancer, explaining abscopal effects. RT has been the most established of the abovementioned techniques for decades, and will not be included in the review. While initially focused on complete tumor ablation, these techniques are now shifting towards milder, more controlled applications that induce ICD without extensive tissue damage. This review explores how physical ablation therapies can harness ICD to boost anticancer immunity, emphasizing their potential to complement immunotherapies and improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Y Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - R Demuynck
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - J Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - K Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - S De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - G P R Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - K Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - D V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - I Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Mechanism of ferroptosis in heart failure: The role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and intervention strategies. Ageing Res Rev 2025; 109:102770. [PMID: 40360081 DOI: 10.1016/j.arr.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
The ferroptosis of cardiomyocytes has been recognized as the core pathological mechanism of heart failure. During the evolution of cardiovascular diseases, the accumulation of angiotensin II and advanced glycation end products can lead to the excessive activation of the RAGE/TLR4-JNK1/2 pathway, which subsequently triggers ferritinophagy, clockophagy, and enhanced p53 activity, ultimately leading to cardiomyocyte ferroptosis. It is evident that deeply unraveling the specific mechanisms in this field and comprehensively evaluating potential drugs and therapeutic strategies targeting this pathway is crucial for improving the status of cardiomyocyte ferroptosis. However, our current understanding of this pathway's specific molecular biological mechanisms in the process of cardiomyocyte ferroptosis remains limited. In light of this, this paper first comprehensively reviews the historical context of ferroptosis research, compares the similarities and differences between ferroptosis and other standard modes of cell death, elucidates the core mechanisms of ferroptosis and its close connection with heart failure, aiming to establish a basic cognitive framework for readers on ferroptosis and its role in heart failure. Subsequently, the paper delves into the pivotal role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and its intricate molecular biological regulatory network. Furthermore, it systematically integrates various therapeutic approaches aimed at inhibiting RAGE, TLR4, and JNK1/2 activity to alleviate cardiomyocyte ferroptosis, encompassing RNA interference technology, gene knockout techniques, small molecule inhibitors, natural active ingredients, as well as traditional Chinese and Western medicines, with the ultimate goal of forging new avenues and strategies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| |
Collapse
|
5
|
Ifijen IH, Awoyemi RF, Faderin E, Akobundu UU, Ajayi AS, Chukwu JU, Lekan OK, Asiriuwa OD, Maliki M, Ikhuoria EU. Protein-based nanoparticles for antimicrobial and cancer therapy: implications for public health. RSC Adv 2025; 15:14966-15016. [PMID: 40343307 PMCID: PMC12060137 DOI: 10.1039/d5ra01427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
This review discusses the growing potential of protein-based nanoparticles (PBNPs) in antimicrobial and cancer therapies, emphasizing their mechanisms of action, applications, and future prospects. In antimicrobial therapy, PBNPs exhibit several mechanisms of action, including disruption of microbial membranes, enhanced antibiotic delivery, immune modulation, and biofilm disruption. Protein nanoparticles like albumin, lactoferrin, gelatin, and peptide-based variants enhance the efficacy of antibiotics, offering targeted approaches to combat multidrug-resistant pathogens. Their ability to improve drug localization and enhance microbial eradication represents a significant advancement in infectious disease management. In cancer therapy, PBNPs facilitate targeted drug delivery, controlled release, tumor microenvironment modulation, and photothermal and photodynamic therapies. Nanoparticles such as Abraxane® and engineered ferritin nanocages are at the forefront of cancer treatment, enhancing the precision and effectiveness of chemotherapy while minimizing adverse effects. Additionally, silk fibroin nanoparticles are being explored for their biodegradability and targeting capabilities. Despite their promise, challenges remain, including the scalability of production, long-term safety concerns, regulatory approval processes, and environmental impact. Addressing these issues through rigorous research and innovation is crucial for integrating PBNPs into mainstream therapeutic practices. PBNPs offer transformative solutions in both antimicrobial and cancer therapies, with significant implications for improving public health outcomes globally.
Collapse
Affiliation(s)
- Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo, PMB 1049 Benin City Nigeria
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University Starkville Mississippi MS 39762 United State of America
| | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | | | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Muniratu Maliki
- Department of Industrial Chemistry, Edo State University Iyamho Edo State Nigeria
| | | |
Collapse
|
6
|
Lin TC, Liu IJ, Chih HY, Tzang BS, Liang JA, Kuo CW, Hung CY, Hsu TC, Chiang WH. Photothermal-enhanced ROS storm by hyaluronic acid-conjugated nanocatalysts to amplify tumor-specific photo-chemodynamic therapy and immune response. Int J Biol Macromol 2025; 309:142975. [PMID: 40210075 DOI: 10.1016/j.ijbiomac.2025.142975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Integrating photodynamic therapy (PDT) and chemodynamic therapy (CDT) shows promising potential in tumor treatment. Nevertheless, the lack of specific tumor targeting, serious photobleaching, and poor photothermal effect of photosensitizers, the intracellular low Fenton reaction efficiency, and glutathione (GSH)-elicited reactive oxygen species (ROS) depletion profoundly restrict ROS-mediated cancer therapy. To enhance ROS generation with the assistance of photothermal therapy (PTT), the hyaluronic acid (HA)-decorated Fe-MIL-88B (MIL) nanocatalysts were fabricated for tumor-targeted delivery of photosensitizer IR820. The IR820@HA-coated MIL (IHM) nanocatalysts remarkably enhanced the photothermal conversion efficacy and singlet oxygen (1O2) production of IR820 and lowered IR820 photobleaching. The IHM nanocatalysts promoted the conversion of H2O2 into toxic ·OH upon thermo/acidity-enhanced Fe3+-mediated Fenton reaction and consumed GSH via Fe3+-elicited GSH oxidation. After being internalized by 4 T1 cancer cells via CD44-mediated endocytosis, the IHM nanocatalysts under irradiation of near-infrared (NIR) laser prominently produced hyperthermia and strong ROS storm, thereby causing apoptosis and ferroptosis via mitochondria damage and lipid peroxidation, and inducing immunogenic cell death (ICD). Through HA-mediated tumor targeting, the IHM nanocatalysts effectively accumulated in 4 T1 tumor and inhibited tumor growth and lung metastasis by PTT-enhanced PDT/CDT combined with ferroptosis and ICD-amplified antitumor immune response, showing great promise in future tumor treatment.
Collapse
Affiliation(s)
- Tzu-Chen Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Yun Chih
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ju-An Liang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chia-Wei Kuo
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chun-Yu Hung
- Department of Orthopedic Surgery, Jen-Ai Hospital, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
7
|
Zhang X, Li M, Pang X, Wang WL, Wang XC, Shen ZL, Shi RJ, Tang YL, Liang XH. An injectable hydrogel with photothermal and chemodynamic therapies for targeted promotion of ferroptosis in oral squamous cell carcinoma. NANOSCALE 2025; 17:10277-10291. [PMID: 40171607 DOI: 10.1039/d4nr05147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Ferroptosis-driven tumor ablation strategies based on nanotechnology could be achieved by increasing hydrogen peroxide (H2O2) concentrations or decreasing glutathione (GSH) levels. However, the intracellular antioxidative defense mechanisms endow the oral squamous cell carcinoma (OSCC) cells with ferroptosis resistance capacity. Therefore, injectable self-healing carboxymethyl chitosan (CMCS)/aldehyde-based hyaluronic acid (HA-CHO)/PVP-CuO2 (PCu)/polydopamine (PDA) (CHPP) hydrogels were developed to promote ferroptosis through increasing H2O2 concentrations and decreasing GSH levels. The introduction of HA-CHO can directly target the CD44 receptor and form Schiff bonds via CMCS to build the backbone of CHPP hydrogels. The CHPP hydrogels can responsively release H2O2 to catalyze the production of hydroxyl radical (˙OH) via chemodynamic therapy (CDT) in the tumor microenvironment (TME), sustained depletion of GSH through the dual action of Cu2+ and ˙OH, and generate repeated high temperatures under photothermal therapy (PTT) for a direct OSCC-killing effect after the loading of PCu and PDA. In addition, the OSCC tissue RNA sequencing suggests that the differentially expressed genes of the CHPP hydrogels exerting the targeted OSCC therapy enrich the ferroptosis signaling pathways significantly. Then, liproxstatin-1 (a ferroptosis inhibitor) was utilized to recover the activation of glutathione peroxidase 4 (GPX4), which can weaken the therapeutic effect of CHPP on OSCC. The CHPP hydrogels are a promising strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec.3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China.
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University, People's Republic of China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec.3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China.
| | - Wan-Li Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec.3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China.
| | - Xiao-Chen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec.3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China.
| | - Ze-Liang Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University, People's Republic of China
| | - Rong-Jia Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec.3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec.3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China.
| |
Collapse
|
8
|
Yang K, Chen Q, Chen J, Geng LF, Ma MX, Gu YQ, Choudhary MI, Liang H, Chen ZF. Copper(II) Complexes of Pyrazolopyrimidine Derivatives as Anticancer Agents with Enhanced Chemodynamic Therapy through Bimodal Apoptosis and Ferroptosis. J Med Chem 2025; 68:7137-7152. [PMID: 40138496 DOI: 10.1021/acs.jmedchem.4c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
We reported 10 new copper(II) complexes 1-10 with pyrazolopyrimidine derivatives as ligands. Complexes 2 and 4 reacted with glutathione (GSH) in cells through Fenton-like reaction to generate highly toxic hydroxyl radical (·OH) for chemodynamic therapy (CDT), and reduced endogenous glutathione peroxidase 4 (GPX4) to induce ferroptosis. In addition, these complexes effectively caused mitochondrial dysfunction and induced apoptosis and autophagy in tumor cells. Furthermore, 2 and 4 effectively inhibited the bladder cancer cell growth in a xenograft model. This study presents new copper(II) complexes that can significantly induce bladder cancer cells death by enhanced CDT through bimodal apoptosis and ferroptosis, providing a promising approach for cancer therapy.
Collapse
Affiliation(s)
- Kun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qian Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Juan Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lu-Fei Geng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Meng-Xue Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74270, Pakistan
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
9
|
He J, Wang G, Zhou Y, Li B, Shang P. Recent advances in polydopamine-coated metal-organic frameworks for cancer therapy. Front Bioeng Biotechnol 2025; 13:1553653. [PMID: 40291560 PMCID: PMC12023280 DOI: 10.3389/fbioe.2025.1553653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
The creation and development of classical multifunctional nanomaterials are crucial for the advancement of nanotherapeutic treatments for tumors. Currently, metal-organic frameworks (MOFs) modified with polydopamine (PDA) are at the forefront of nanomedicine research, particularly in tumor diagnostics and therapy, owing to their exceptional biocompatibility, expansive specific surface area, multifaceted functionalities, and superior photothermal properties, which led to significant advancements in anti-tumor research. Consequently, a range of anti-cancer strategies has been devised by leveraging the exceptional capabilities of MOFs, including intelligent drug delivery systems, photodynamic therapy, and photothermal therapy, which are particularly tailored for the tumor microenvironment. In order to gain deeper insight into the role of MOFs@PDA in cancer diagnosis and treatment, it is essential to conduct a comprehensive review of existing research outcomes and promptly analyze the challenges associated with their biological applications. This will provide valuable perspectives on the potential of MOFs@PDA in clinical settings.
Collapse
Affiliation(s)
- Jingchao He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid and Cell Fate Regulation, Yangzhou University, Yangzhou, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yongfang Zhou
- Department of Oncology, Jining Cancer Hospital, Jining, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Pan Shang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
10
|
Zhu L, Hu J, Wu X, Zhang J, Xu X, Huang X, Tian B, Zhao CX, Du Y, Wu L. Programmed enhancement of endogenous iron-mediated lysosomal membrane permeabilization for tumor ferroptosis/pyroptosis dual-induction. Nat Commun 2025; 16:3017. [PMID: 40148335 PMCID: PMC11950380 DOI: 10.1038/s41467-025-58124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Ferroptosis and pyroptosis, as emerging regulated forms of cell death capable of overcoming apoptotic resistance, demonstrate promising potential in tumor therapy. Given that iron manipulation and reactive oxygen species elevation serve as common stimuli for both processes, inducing lysosomal membrane permeabilization (LMP) with ensuing release of lysosomal contents (including iron ions and cathepsins) is anticipated to realize dual induction of ferroptosis/pyroptosis. Herein, we report a folic acid and croconaine molecule-functionalized upconversion nanoparticle (UCNP-Cro/FA) that is able to mobilize intracellular stores of endogenous iron and spatiotemporally control the lysosome-intrinsic Fenton chemistry, thereby triggering LMP-associated cell death. The process of endogenous iron mobilization occurs through two key steps: Cro-mediated coordination of abundant Fe3+ ions within lysosomes, followed by UV-emitting upconversion core-mediated photoreduction, resulting in Fe2+ ions release. Both in vitro and in vivo experiments show that UCNP-Cro/FA + NIR treatment effectively boost LMP by endogenous iron-mediated •OH production, ultimately triggering irreversible tumor cell death via ferroptosis and Caspase-1/GSDMD-dependent pyroptosis pathways. Moreover, this process potentiates tumor immunogenicity, holding promise for tumor immunotherapy. Overall, this work proposes a feasible tumor therapy strategy that integrates ferroptosis and pyroptosis through the efficient application and activation of endogenous iron.
Collapse
Affiliation(s)
- Luwen Zhu
- Department of General Surgery, Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, P. R. China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiahao Hu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaochuan Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jucong Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xinyi Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiajie Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China.
| | - Chun-Xia Zhao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
| | - Yongzhong Du
- Department of General Surgery, Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, P. R. China.
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Liming Wu
- Department of General Surgery, Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, P. R. China.
| |
Collapse
|
11
|
Zhao C, Ma M, Yang J, Sun J, Sun Y, Ma P, Jiao S, Song D. Advancing Tumor Microenvironment Analysis: A Fluorescence Nanosystem for Caspase-1 Monitoring and Synergistic Therapy. Anal Chem 2025; 97:6240-6248. [PMID: 40066679 DOI: 10.1021/acs.analchem.5c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The lack of precise, real-time analytical tools for monitoring tumor microenvironment changes during treatment hinders advancements in integrated diagnostic and therapeutic platforms. Traditional caspase-3 monitoring strategies are limited by their inability to address drug resistance and newly discovered apoptotic pathways, leading to reduced accuracy and practicality. To overcome these limitations, we developed a fluorescence-based "Trojan horse" nanosystem, PFpR@CM, featuring high-sensitivity Caspase-1 detection, tumor-targeted delivery, and photothermal therapy. Caspase-1 was selected as a biomarker due to its ability to provide accurate feedback on reactive oxygen species (ROS) generation. The system employs Fe-doped polydopamine nanoparticles and red fluorescent carbon quantum dots (RCQDs) as the analytical core, achieving a detection limit of 0.024 U/mL for Caspase-1 with a linear range of 0.05-1.0 U/mL. By integrating MG-63 cell membrane camouflage, PFpR@CM ensures tumor specificity and immune evasion, allowing precise in situ monitoring of ROS production during ferroptosis. Experimental results demonstrate that the system enables simultaneous real-time fluorescence tracking and localized therapeutic interventions, achieving over 80% tumor volume reduction in vivo with minimal systemic toxicity. This work establishes a novel analytical chemistry approach for multifunctional tumor monitoring and treatment, providing an innovative solution to challenges in precision oncology.
Collapse
Affiliation(s)
- Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jingdan Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ying Sun
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Shan Jiao
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
12
|
Xu J, Zhang Y, Zheng Y, Wang T, Zhang H, Wang K, Wang Y, Williams GR, Zhu LM. A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm. Carbohydr Polym 2025; 351:123120. [PMID: 39779027 DOI: 10.1016/j.carbpol.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus. In vitro and in vivo assays revelaed that the NPs were able to effectively induce the immunogenic ferroptosis of cancer cells. Under NIR irradiation, EpCAM-CS-co-PNVCL@IR780/IMQ cause cell death in tumors via photothermal therapy. Moreover, IMQ promotes the maturation of dendritic cells (DCs), which then activate cytotoxic T-lymphocytes (CTLs); these T-cells go on to provide immunotherapy of metastatic tumor cells. The metastatic tumor cells can be induced to undergo ferroptosis by the addition of arachidonic acid (AA), which interacts with interferon cytokines (IFN-γ) released from CTLs.
Collapse
Affiliation(s)
- Jianxiang Xu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Yilu Zheng
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Tong Wang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Huan Zhang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
13
|
Zhu H, Xia D, He H, Zhang J, Wu D. Polydopamine Decorated Hyaluronic Acid Clusters for Tumor Cell Targeting Combination Therapy via Template Self-Consumption Methods. Macromol Rapid Commun 2025; 46:e2400887. [PMID: 39632414 DOI: 10.1002/marc.202400887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Photothermal-chemodynamic-chemotherapy (PTT-CDT-CT) combination therapy significantly enhances the therapeutic efficacy against tumors. However, synthesizing PTT-CDT-CT nanosystems is complex, typically requiring the preparation and conjugation of three components into a single carrier. To overcome this challenge, a facile template self-consumption method is developed. In this approach, hyaluronic acid (HA), recognized for its tumor cell targeting properties, chelates with Cu2+ to form Cu-HA, which then transforms into CuO2@HA cluster templates. These templates self-consume gradually, producing ·OH and Cu2+, which catalyze the rapid polymerization of dopamine and coordinate with polydopamine respectively, enhancing the photothermal conversion efficiency. After gossypol loading, GPDA@HA clusters are formed, achieving high gossypol loading efficiency due to π-π stacking between gossypol and PDA, as well as coordination between gossypol and Cu2+. The GPDA@HA clusters are effectively internalized by tumor cells through endocytosis, mediating the synergistic damage or inhibition of intracellular proteins, and nucleic acids against tumor cells via PTT, CDT, and CT. Crucially, the synergism of PTT-CDT-CT combination therapy far surpasses those of a single modality. This work introduces a new pathway for the synthesis of PTT-CDT-CT nanosystems, avoiding the conventional synthesis and loading of different therapeutic agents, and provides insights into developing personalized drug combination therapies with high efficacy.
Collapse
Affiliation(s)
- Hongrui Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Huan He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, 710049, China
| |
Collapse
|
14
|
Li Z, Xi Z, Fan C, Xi X, Zhou Y, Zhao M, Xu L. Nanomaterials evoke pyroptosis boosting cancer immunotherapy. Acta Pharm Sin B 2025; 15:852-875. [PMID: 40177577 PMCID: PMC11959974 DOI: 10.1016/j.apsb.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 04/05/2025] Open
Abstract
Cancer immunotherapy is currently a very promising therapeutic strategy for treating tumors. However, its effectiveness is restricted by insufficient antigenicity and an immunosuppressive tumor microenvironment (ITME). Pyroptosis, a unique form of programmed cell death (PCD), causes cells to swell and rupture, releasing pro-inflammatory factors that can enhance immunogenicity and remodel the ITME. Nanomaterials, with their distinct advantages and different techniques, are increasingly popular, and nanomaterial-based delivery systems demonstrate significant potential to potentiate, enable, and augment pyroptosis. This review summarizes and discusses the emerging field of nanomaterials-induced pyroptosis, focusing on the mechanisms of nanomaterials-induced pyroptosis pathways and strategies to activate or enhance specific pyroptosis. Additionally, we provide perspectives on the development of this field, aiming to accelerate its further clinical transition.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuanyong Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinran Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yao Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
15
|
Yan X, Li Q, Xiao S, Chen J, Song W. Sulfasalazine-loaded nanoframes: A new frontier in bladder cancer therapy through ferroptosis induction. Colloids Surf B Biointerfaces 2025; 246:114394. [PMID: 39603199 DOI: 10.1016/j.colsurfb.2024.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Promoting ferroptosis in tumor cells has emerged as a promising strategy for cancer therapy. Nonetheless, the heightened antioxidant activity within tumor cells hampers this approach, diminishing its effectiveness and fostering drug resistance. In this study, a new type of sulfasalazine (SAS) loaded nanoframe self-etched Pt-Co nanodendrites (Pt/Co-BNN@SAS) was developed, presenting a novel avenue for inducing ferroptosis in tumor cells by depleting glutathione (GSH) for cancer treatment. Pt/Co-BNN exhibits notable peroxidase (POD) activity, catalyzing the production of abundant oxygen radicals through the consumption of hydrogen peroxide (H2O2) and the concurrent depletion of GSH. Simultaneously, the liberated sulfasalazine (SAS) from Pt/Co-BNN@SAS effectively obstructs system xc-, impeding the absorption of cystine by tumor cells and thereby expediting GSH depletion. The expeditious reduction of GSH markedly stimulates the accumulation of lipid peroxides (LPO) and suppresses glutathione peroxidase 4 (GPX4), consequently triggering ferroptosis in bladder cancer cells and inhibiting the migration ability of bladder cancer cells effectively. This research contributes to a more profound comprehension of nano-drug-biological interactions and provides a prospective outlook on treating bladder cancer by instigating ferroptosis in tumor cells through GSH depletion.
Collapse
Affiliation(s)
- Xieyu Yan
- Department of Urology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No.61, west Jiefang Road, Changsha 410011, China
| | - Quanjin Li
- Department of Urology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No.61, west Jiefang Road, Changsha 410011, China
| | - Shuai Xiao
- Department of Urology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No.61, west Jiefang Road, Changsha 410011, China
| | - Junjie Chen
- Department of Urology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No.61, west Jiefang Road, Changsha 410011, China.
| | - Wei Song
- Department of Urology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No.61, west Jiefang Road, Changsha 410011, China.
| |
Collapse
|
16
|
Yang T, Dai L, Liu J, Lu Y, Pan M, Pan L, Ye L, Yuan L, Li X, Bei Z, Qian Z. Metal-phenolic-network-coated gold nanoclusters for enhanced photothermal/chemodynamic/immunogenic cancer therapy. Bioact Mater 2025; 44:447-460. [PMID: 39534788 PMCID: PMC11555603 DOI: 10.1016/j.bioactmat.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterised by a short survival period, high malignancy, strong invasiveness, and high rates of recurrence and metastasis. Due to its unique molecular phenotype, TNBC is insensitive to endocrine therapy or molecular targeted therapy. The conventional treatment approach involves systemic chemotherapy for overall management; however, adjuvant chemotherapy after surgery has shown poor efficacy as residual lesions can easily lead to tumour recurrence. Therefore, there is an urgent need to find more effective treatment strategies. Herein, we designed a gold nanocluster coated with a metal-phenol formaldehyde network structure (AuNCs@PDA-Mn) for tumour Photothermal therapy and chemodynamic therapy (PTT and CDT), which induces systemic immune responses to suppress tumour metastasis. Experimental results show that after continuous irradiation for 10 min under an 808 nm laser (1.0W/cm2), AuNCs@PDA-Mn not only exhibits better tumour inhibition both in vitro and in vivo but also triggers stronger immune effects systemically. Therefore, this combined PTT and CDT treatment approach has great potential and provides a clinically relevant and valuable option for triple-negative breast cancer.
Collapse
Affiliation(s)
- Tingyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Ye
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liping Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xicheng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Wang Z, Tang Y, Li Q. A self-assembling nanoplatform for pyroptosis and ferroptosis enhanced cancer photoimmunotherapy. LIGHT, SCIENCE & APPLICATIONS 2025; 14:16. [PMID: 39743555 DOI: 10.1038/s41377-024-01673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025]
Abstract
The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms. Immunogenic cell death, such as pyroptosis and ferroptosis, can efficiently boost antitumor immunity. However, the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited. Herein, a multifunctional pH-responsive theranostic nanoplatform (M@P) is designed and constructed by self-assembly of aggregation-induced emission photosensitizer MTCN-3 and immunoadjuvant Poly(I: C), which are further encapsulated in amphiphilic polymers. This nanoplatform is found to have the characteristics of cancer cell targeting, pH response, near-infrared fluorescence imaging, and lysosome targeting. Therefore, after targeting lysosomes, M@P can cause lysosome dysfunction through the generation of reactive oxygen species and heat under light irradiation, triggering pyroptosis and ferroptosis of tumor cells, achieving immunogenic cell death, and further enhancing immunotherapy through the combined effect with the immunoadjuvant Poly(I: C). The anti-tumor immunotherapy effect of M@P has been further demonstrated in in vivo antitumor experiment of 4T1 tumor-bearing mouse model with poor immunogenicity. This research would provide an impetus as well as a novel strategy for dual function inducers and combined immune activators enhanced photoimmunotherapy.
Collapse
Affiliation(s)
- Zhichao Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
18
|
Liang KA, Chih HY, Liu IJ, Yeh NT, Hsu TC, Chin HY, Tzang BS, Chiang WH. Tumor-targeted delivery of hyaluronic acid/polydopamine-coated Fe 2+-doped nano-scaled metal-organic frameworks with doxorubicin payload for glutathione depletion-amplified chemodynamic-chemo cancer therapy. J Colloid Interface Sci 2025; 677:400-415. [PMID: 39096708 DOI: 10.1016/j.jcis.2024.07.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Chemodynamic therapy (CDT), an emerging cancer treatment modality, uses multivalent metal elements to convert endogenous hydrogen peroxide (H2O2) to toxic hydroxyl radicals (•OH) via a Fenton or Fenton-like reaction, thus eliciting oxidative damage of cancer cells. However, the antitumor potency of CDT is largely limited by the high glutathione (GSH) concentration and low catalytic efficiency in the tumor sites. The combination of CDT with chemotherapy provides a promising strategy to overcome these limitations. In this work, to enhance antitumor potency by tumor-targeted and GSH depletion-amplified chemodynamic-chemo therapy, the hyaluronic acid (HA)/polydopamine (PDA)-decorated Fe2+-doped ZIF-8 nano-scaled metal-organic frameworks (FZ NMs) were fabricated and utilized to load doxorubicin (DOX), a chemotherapy drug, via hydrophobic, π-π stacking and charge interactions. The attained HA/PDA-covered DOX-carrying FZ NMs (HPDFZ NMs) promoted DOX and Fe2+ release in weakly acidic and GSH-rich milieu and exhibited acidity-activated •OH generation. Through efficient CD44-mediated endocytosis, the HPDFZ NMs internalized by CT26 cells not only prominently enhanced •OH accumulation by consuming GSH via PDA-mediated Michael addition combined with Fe2+/Fe3+ redox couple to cause mitochondria damage and lipid peroxidation, but also achieved intracellular DOX release, thus eliciting apoptosis and ferroptosis. Importantly, the HPDFZ NMs potently inhibited CT26 tumor growth in vivo at a low DOX dose and had good biosafety, thereby showing promising potential in tumor-specific treatment.
Collapse
Affiliation(s)
- Kai-An Liang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Yun Chih
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Nien-Tzu Yeh
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
19
|
Cao X, Feng N, Huang Q, Liu Y. Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers: From Synthesis to Cancer Therapy and Biomedical Imaging. ACS APPLIED BIO MATERIALS 2024; 7:7965-7986. [PMID: 38382060 DOI: 10.1021/acsabm.3c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recently, there has been significant interest in nanoscale metal-organic frameworks (NMOFs) characterized by ordered crystal structures and nanoscale coordination polymers (NCPs) featuring amorphous structures. These structures arise from the coordination interactions between inorganic metal ions or clusters and organic ligands. Their advantages, such as the ability to tailor composition and structure, efficiently encapsulate diverse therapeutic or imaging agents within porous frameworks, inherent biodegradability, and surface functionalization capability, position them as promising carriers in the biomedical fields. This review provides an overview of the synthesis and surface modification strategies employed for NMOFs and NCPs, along with their applications in cancer treatment and biological imaging. Finally, future directions and challenges associated with the utilization of NMOFs and NCPs in cancer treatment and diagnosis are also discussed.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Nana Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Zeng YL, Liu LY, Ma TZ, Liu Y, Liu B, Liu W, Shen QH, Wu C, Mao ZW. Iridium(III) Photosensitizers Induce Simultaneous Pyroptosis and Ferroptosis for Multi-Network Synergistic Tumor Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202410803. [PMID: 39180126 DOI: 10.1002/anie.202410803] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/26/2024]
Abstract
The integration of pyroptosis and ferroptosis hybrid cell death induction to augment immune activation represents a promising avenue for anti-tumor treatment, but there is a lack of research. Herein, we developed two iridium (III)-triphenylamine photosensitizers, IrC and IrF, with the capacity to disrupt redox balance and induce photo-driven cascade damage to DNA and Kelch-like ECH-associated protein 1 (KEAP1). The activation of the absent in melanoma 2 (AIM2)-related cytoplasmic nucleic acid-sensing pathway, triggered by damaged DNA, leads to the induction of gasdermin D (GSDMD)-mediated pyroptosis. Simultaneously, iron homeostasis, regulated by the KEAP1/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) pathway, serves as a pivotal bridge, facilitating not only the induction of gasdermin E (GSDME)-mediated non-canonical pyroptosis, but also ferroptosis in synergy with glutathione peroxidase 4 (GPX4) depletion. The collaborative action of pyroptosis and ferroptosis generates a synergistic effect that elicits immunogenic cell death, stimulates a robust immune response and effectively inhibits tumor growth in vivo. Our work introduces the first metal-based small molecule dual-inducers of pyroptosis and ferroptosis for potent cancer immunotherapy, and highlights the significance of iron homeostasis as a vital hub connecting synergistic effects of pyroptosis and ferroptosis.
Collapse
Affiliation(s)
- You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bin Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
21
|
Wen Y, Li Y, Li BB, Liu P, Qiu M, Li Z, Xu J, Bi B, Zhang S, Deng X, Liu K, Zhou S, Wang Q, Zhao J. Pyroptosis induced by natural products and their derivatives for cancer therapy. Biomater Sci 2024; 12:5656-5679. [PMID: 39429101 DOI: 10.1039/d4bm01023j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Natural products, which are compounds extracted and/or refined from plants and microbes in nature, have great potential for the discovery of therapeutic agents, especially for infectious diseases and cancer. In recent years, natural products have been reported to induce multiple cell death pathways to exhibit antitumor effects. Among them, pyroptosis is a unique programmed cell death (PCD) characterized by continuous cell membrane permeability and intracellular content leakage. According to the canonical and noncanonical pathways, the formation of gasdermin-N pores involves a variety of transcriptional targets and post-translational modifications. Thus, tailored control of PCD may facilitate dying cells with sufficient immunogenicity to activate the immune system to eliminate other tumor cells. Therefore, we summarized the currently reported natural products or their derivatives and their nano-drugs that induce pyroptosis-related signaling pathways. We reviewed six main categories of bioactive compounds extracted from natural products, including flavonoids, terpenoids, polyphenols, quinones, artemisinins, and alkaloids. Correspondingly, the underlying mechanisms of how these compounds and their derivatives engage in pyroptosis are also discussed. Moreover, the synergistic effect of natural bioactive compounds with other antitumor therapies is proposed as a novel therapeutic strategy for traditional chemotherapy, radiotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, hyperthermal therapy, and sonodynamic therapy. Consequently, we provide insights into natural products to develop a novel antitumor therapy or qualified adjuvant agents by inducing pyroptosis, which may eventually be applied clinically.
Collapse
Affiliation(s)
- Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bin-Bin Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Peng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Miaojuan Qiu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Zihang Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Jiaqi Xu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bo Bi
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Xinyi Deng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Kaiyuan Liu
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shangbo Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Qiang Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
22
|
Yeh NT, Lin TC, Liu IJ, Hu SH, Hsu TC, Chin HY, Tzang BS, Chiang WH. Hyaluronic acid-covered ferric ion-rich nanobullets with high zoledronic acid payload for breast tumor-targeted chemo/chemodynamic therapy. Int J Biol Macromol 2024; 279:135271. [PMID: 39233170 DOI: 10.1016/j.ijbiomac.2024.135271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Due to the heterogeneity of the tumor microenvironment, the clinical efficacy of tumor treatment is not satisfied, highlighting the necessity for new strategies to tackle this issue. To effectively treat breast tumors by tumor-targeted chemo/chemodynamic therapy, herein, the Fe3+-rich MIL-88B nanobullets (MNs) covered with hyaluronic acid (HA) were fabricated as vehicles of zoledronic acid (ZA). The attained ZA@HMNs showed a high ZA payload (ca 29.6 %), outstanding colloidal stability in the serum-containing milieu, and accelerated ZA as well as Fe3+ release under weakly acidic and glutathione (GSH)-rich conditions. Also, the ZA@HMNs consumed GSH by GSH-mediated Fe3+ reduction and converted H2O2 into OH via Fenton or Fenton-like reaction with pH reduction. After being internalized by 4T1 cells upon CD44-mediated endocytosis, the ZA@HMNs depleted intracellular GSH and degraded H2O2 into OH, thus eliciting lipid peroxidation and mitochondria damage to suppress cell proliferation. Also, the ZA@HMNs remarkably killed macrophage-like RAW 264.7 cells. Importantly, the in vivo studies and ki67 and GPX4 staining of tumor sections demonstrated that the ZA@HMNs efficiently accumulated in 4T1 tumors to hinder tumor growth via ZA chemotherapy combined with OH-mediated ferroptosis. This work presents a practicable strategy to fabricate ZA@HMNs for breast tumor-targeted chemo/chemodynamic therapy with potential clinical translation.
Collapse
Affiliation(s)
- Nien-Tzu Yeh
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Chen Lin
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
23
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
24
|
Deng Y, Huang S, Jiang G, Zhou L, Nezamzadeh-Ejhieh A, Liu J, Zhou Z. Current status and prospects of MOFs loaded with H 2O 2-related substances for ferroptosis therapy. RSC Med Chem 2024; 15:2996-3016. [PMID: 39309362 PMCID: PMC11411616 DOI: 10.1039/d4md00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a programmed cell death mechanism characterized by the accumulation of iron (Fe)-dependent lipid peroxides within cells. Ferroptosis holds excellent promise in tumor therapy. Metal-organic frameworks (MOFs) offer unique advantages in tumor ferroptosis treatment due to their high porosity, excellent stability, high biocompatibility, and targeting capabilities. Inducing ferroptosis in tumor cells primarily involves the production of reactive oxygen species (ROS), like hydroxyl radicals (˙OH), through iron-mediated Fenton reactions. However, the intrinsic H2O2 levels in tumor cells are often insufficient to sustain prolonged consumption, limiting therapeutic efficacy if ˙OH production is inadequate. Therefore, catalyzing or supplementing the intracellular H2O2 levels in tumor cells is essential for inducing ferroptosis by nanoscale metal-organic frameworks. This article reviews the biological characteristics and molecular mechanisms of ferroptosis, introduces H2O2-related substances, and reviews MOF-based nanoscale strategies for enhancing intracellular H2O2 levels in tumor cells. Finally, the challenges and prospects of this approach are discussed, aiming to provide insights into improving the effectiveness of ferroptosis induced by MOFs.
Collapse
Affiliation(s)
- Yu Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Guanming Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital) 78 Wandao Road South Dongguan 523059 Guangdong China
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Zhikun Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| |
Collapse
|
25
|
Zhang P, Bai H, Yao Z, Gu J, Tian Y, Yi W, Li S. Tumor microenvironment responsive chitosan-coated W-doped MoO x biodegradable composite nanomaterials for photothermal/chemodynamic synergistic therapy. Int J Biol Macromol 2024; 276:133583. [PMID: 38960266 DOI: 10.1016/j.ijbiomac.2024.133583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Chemodynamic therapy (CDT), an approach that eradicates tumor cells through the catalysis of hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (·OH), possesses distinct advantages in tumor specificity and minimal side effects. However, CDT's therapeutic efficacy is currently hampered by the low production efficiency of ·OH. To address this limitation, this study introduces a water-soluble chitosan-coated W-doped MoOx (WMoOx/CS) designed for the combined application of photothermal therapy (PTT) combined with CDT. The W-doped MoOx (WMoOx) was synthesized in one step by the hydrothermal method, and its surface was modified by water-soluble chitosan (carboxylated chitosan, CS) to enhance its biocompatibility. WMoOx boasts a high near-infrared photothermal conversion efficiency of 52.66 %, efficiently transducing near-infrared radiation into heat. Moreover, the Mo4+/Mo5+ and W5+ ions in WMoOx catalyze H2O2 to produce ·OH for CDT, and the Mo5+/Mo6+ and W6+ ions in WMoOx reduce intracellular glutathione levels and prevent the scavenging of ·OH by glutathione. Crucially, the combination of WMoOx/CS and near-infrared light irradiation demonstrates promising synergistic antitumor effects in both in vitro and in vivo models, highlighting its potential for the combined application of PTT and CDT.
Collapse
Affiliation(s)
- Ping Zhang
- College of Science, Northwest A&F University, Yang ling 712100, China.
| | - Hongmei Bai
- College of Science, Northwest A&F University, Yang ling 712100, China
| | - Zhixiong Yao
- College of Science, Northwest A&F University, Yang ling 712100, China
| | - Jialin Gu
- College of Science, Northwest A&F University, Yang ling 712100, China
| | - Yilong Tian
- School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of ShaanXi Province & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaojun Li
- College of Life Sciences, Northwest A&F University, Yang ling 712100, China.
| |
Collapse
|
26
|
Xie J, Li D, Niu S, Sheng Y, Shen R, He Y, Xu C, Zhang Y, Wang T, Xue Y. Nano-Titanium Oxide-Coated Carbon Nanotubes for Photothermal Therapy in the Treatment of Colorectal Cancer. Adv Healthc Mater 2024; 13:e2401009. [PMID: 38885692 DOI: 10.1002/adhm.202401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Carbon nanotubes (CNTs) display good potential in tumor photothermal therapy (PTT). In this study, it is aimed to investigate the therapeutic potential of nano-titanium oxide-coated multi-walled carbon nanotubes (MCNTs) against colorectal cancer (CRC). First, TiO2 nanosheets are modified on the surface of MCNTs to obtain nano-TiO2-coated MCNTs. Next, cell compatibility validation is conducted on nano-TiO2-coated MCNTs, and it is found that nano-TiO2-coated MCNTs are safe within a certain concentration range (0-200 µg mL⁻1). Interestingly, nano-TiO2-coated MCNTs display a good killing effect in CRC cells under near-infrared (NIR) laser irradiation. Subsequently, nano-TiO2-coated MCNTs markedly promote the proapoptotic effects of NIR laser irradiation and significantly inhibit the expression of cell cycle proteins CCNA1 and CCND1 in CRC cells under NIR laser irradiation, which indicates that nano-TiO2-coated MCNTs exert anti-CRC effects under NIR laser irradiation by regulating cell apoptosis and cell cycle. Furthermore, nano-TiO2-coated MCNTs accelerate inhibitory effects on the AKT signaling pathway under NIR laser irradiation. Finally, a cell line-derived xenograft model is established, and the results showed that nano-TiO2-coated MCNTs significantly exhibit superior tumor-killing ability under NIR laser irradiation in vivo. Collectively, these results demonstrate that nano-TiO2-coated MCNTs with NIR laser irradiation may serve as an effective strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Jun Xie
- Department of Pediatric Internal Medicine, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, 214023, China
| | - Da Li
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Sen Niu
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Yufan Sheng
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Renhui Shen
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Yiding He
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Chenhao Xu
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Ye Zhang
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Tong Wang
- Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
27
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
28
|
Brustolin Braga C, Milan JC, Andrade Meirelles M, Zavan B, Ferreira-Silva GÁ, Caixeta ES, Ionta M, Pilli RA. Furoxan-piplartine hybrids as effective NO donors and ROS inducers in PC3 cancer cells: design, synthesis, and biological evaluation. RSC Med Chem 2024:d4md00281d. [PMID: 39290383 PMCID: PMC11403579 DOI: 10.1039/d4md00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Conjugation of the naturally occurring product piplartine (PPT, 1), which is a potent cytotoxic compound and ROS inducer, with a diphenyl sulfonyl-substituted furoxan moiety (namely, 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide), an important type of NO donor, via an ether linker of different chain lengths is described, characterized and screened for the anticancer potential. The cytotoxicity of the new hybrids was evaluated on a panel of human cancer cell lines (MCF-7, PC3 and OVCAR-3) and two non-cancer human cells (MCF10A and PNT2). In general, the synthesized hybrids were more cytotoxic and selective compared to their furoxan precursors 4-6 and PPT in the above cancer cells. Particularly, PC3 cells are the most sensitive to hybrids 7 and 9 (IC50 values of 240 nM and 50 nM, respectively), while a lower potency was found for the prostate normal cells (IC50 = 17.8 μM and 14.1 μM, respectively), corresponding to selectivity indices of ca. 75 and 280, respectively. NO generation by the PPT-furoxan compounds in PC3 cells was confirmed using the Griess reaction. Furthermore, the cell growth inhibitory effect of 9 was significantly attenuated by the NO scavenger carboxy-PTIO. The intracellular ROS generation by 7 and 9 was also verified, and different assays showed that co-treatment with the antioxidant N-acetyl-l-cysteine (NAC) provided protection against PPT-induced ROS generation. Further mechanistic studies revealed that 7 and 9 had strong cytotoxicity to induce apoptosis in PC3 cells, being mediated, at least in part, by the NO-release and increase in ROS production. Notably, the ability of 9 to induce apoptosis was stronger than that of 7, which may be attributed to higher levels of NO released by 9. Compounds 7 and 9 modulated the expression profiles of critical regulators of cell cycle, such as CDKN1A (p21), c-MYC, and CCND1 (cyclin D1), as well as induced DNA damage. Overall, tethering the furoxan NO-releasing moiety to the cytotoxic natural product PPT had significant impact on the potential anticancer activity and selectivity of the novel hybrid drug candidates, especially 9, as a result of synergistic effects of both furoxan and PPT's ability to release NO, generate ROS, induce DNA damage, and trigger apoptosis.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Julio Cesar Milan
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Matheus Andrade Meirelles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | | | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| |
Collapse
|
29
|
Rahmani Khalili N, Badiei A, Pirkani Z, Mohammadi Ziarani G, Vojoudi H, Golmohamadi A, Varma RS. Double-shelled, rattle-architecture covalent organic framework: harnessing morphological manipulation for enhanced synergistic multi-drug chemo-photothermal cancer therapy. J Mater Chem B 2024; 12:7915-7933. [PMID: 39036859 DOI: 10.1039/d4tb01096e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Morphological modulation in covalent organic frameworks (COFs) with particular emphasis on the correlation between structure and target applications in biomedical fields, is currently in its early stage of evolution. Herein, a multifunctional rattle-architecture imine-based COF with a mobile core of gold nanoparticles (Au NPs) and an outer polydopamine (PDA) shell, tailored for cancer treatment, has been developed to effectively integrate dual responsive release capabilities with the potential for multiple therapeutic applications. The engineered COF displays outstanding crystallinity, a suitable size and precisely controlled morphological characteristics. By leveraging COF and PDA attributes, the successful co-delivery of hydrophilic doxorubicin (DOX) and hydrophobic docetaxel (DTX) within discrete compartments is achieved responsive to both pH and near-infrared triggers. Designed nanocarrier outperforms prior COFs with a superior 83.7% DOX loading capacity, thanks to its expansive internal space and porous shell. Taking advantage of the inclusion of Au core and the concurrent presence of COF and PDA outer shells, the nanocarrier exhibits a significant photothermal-conversion capability. The rattle-architecture double-shelled Au@RCOF@PDA were functionalized with poly(ethylene glycol)-folic acid (PEG-FA) to confer the system with active-targeting capability and enhanced biocompatibility. Through in vitro and in vivo evaluations, the designed system demonstrates an exceptional synergistic anti-tumor effect, along with favorable biosafety and histocompatibility. This study not only sheds light on the remarkable merits offered by regulating the morphology of COF-based systems in cancer therapy but also highlights the potential for synergistic therapeutic approaches in advancing cancer treatment strategies.
Collapse
Affiliation(s)
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Zanyar Pirkani
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Hossein Vojoudi
- College of Health Sciences, West Chester University of Pennsylvania, PA, USA
| | - Amir Golmohamadi
- College of Health Sciences, West Chester University of Pennsylvania, PA, USA
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565 905 São Carlos, SP, Brazil
| |
Collapse
|
30
|
An N, Tang S, Wang Y, Luan J, Shi Y, Gao M, Guo C. FeP-Based Nanotheranostic Platform for Enhanced Phototherapy/Ferroptosis/Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309940. [PMID: 38534030 DOI: 10.1002/smll.202309940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Ferroptosis is an iron-dependent and lipid peroxides (LPO)-overloaded programmed damage cell death, induced by glutathione (GSH) depletion and glutathione peroxide 4 (GPX4) inactivation. However, the inadequacy of endogenous iron and reactive oxygen species (ROS) restricts the efficacy of ferroptosis. To overcome this obstacle, a near-infrared photo-responsive FeP@PEG NPs is fabricated. Exogenous iron pool can enhance the effect of ferroptosis via the depletion of GSH and further regulate GPX4 inactivation. Generation of ·OH derived from the Fenton reaction is proved by increased accumulation of lipid peroxides. The heat generated by photothermal therapy and ROS generated by photodynamic therapy can enhance cell apoptosis under near-infrared (NIR-808 nm) irradiation, as evidenced by mitochondrial dysfunction and further accumulation of lipid peroxide content. FeP@PEG NPs can significantly inhibit the growth of several types of cancer cells in vitro and in vivo, which is validated by theoretical and experimental results. Meanwhile, FeP@PEG NPs show excellent T2-weighted magnetic resonance imaging (MRI) property. In summary, the FeP-based nanotheranostic platform for enhanced phototherapy/ferroptosis/chemodynamic therapy provides a reliable opportunity for clinical cancer theranostics.
Collapse
Affiliation(s)
- Na An
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuanglong Tang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuwei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Luan
- The HIT Center for Life Science, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Shi
- Magnetic Resonance Department of the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Minghui Gao
- The HIT Center for Life Science, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
31
|
Biglione C, Hidalgo T, Horcajada P. Nanoscaled metal-organic frameworks: charting a transformative path for cancer therapeutics and beyond. Drug Deliv Transl Res 2024; 14:2041-2045. [PMID: 38755501 DOI: 10.1007/s13346-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Through this inspirational note, we would like to highlight the potential of nanoscaled metal-organic frameworks within the biomedical field. The unique properties of these materials that make them promising candidates for new nanomedicines are assessed here as well as the progression reached so far for combinational cancer therapies and theranostic, along with its most recent advances in nanomedicine. Finally, the perspective and challenges of these materials within this field is discussed.
Collapse
Affiliation(s)
- Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935, Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935, Madrid, Spain
| |
Collapse
|
32
|
Zheng Y, Du Y, Williams GR, Zhu Y, Wang T, Zhang Y, Xu J, Wu J, Li F, Zhu LM. A piezoelectric catalytic cascade nanoreactor which reshapes the tumor microenvironment and promotes effective multi-dimensional therapy. NANO ENERGY 2024; 126:109598. [DOI: 10.1016/j.nanoen.2024.109598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Wang Y, Huang K, Wang T, Liu L, Yu F, Sun W, Yao W, Xiong H, Liu X, Jiang H, Wang X. Nanosensors Monitor Intracellular GSH Depletion: GSH Triggers Cu(II) for Tumor Imaging and Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310300. [PMID: 38299477 DOI: 10.1002/smll.202310300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Glutathione (GSH) is the primary antioxidant in cells, and GSH consumption will break the redox balance in cells. Based on this, a method that uses high concentrations of GSH in the tumor microenvironment to trigger the redox reaction of Cu(II) to generate copper nanoprobes with fluorescence and tumor growth inhibition properties is proposed. The nanoprobe mainly exists in the form of Cu(I) and catalyzes the decomposition of hydrogen peroxide into hydroxyl radicals. At the same time, a simple and controllable carbon micro-nano electrode is used to construct a single-cell sensing platform, which enable the detection of glutathione content in single living cells after Cu(II) treatment, providing an excellent example for detecting single-cell biomolecules.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Ke Huang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tingya Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fangfang Yu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
34
|
Hou Y, Zhu C, Ban G, Shen Z, Liang Y, Chen K, Wang C, Shi H. Advancements and Challenges in the Application of Metal-Organic Framework (MOF) Nanocomposites for Tumor Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6295-6317. [PMID: 38919774 PMCID: PMC11198007 DOI: 10.2147/ijn.s463144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoscale metal-organic frameworks (MOFs) offer high biocompatibility, nanomaterial permeability, substantial specific surface area, and well-defined pores. These properties make MOFs valuable in biomedical applications, including biological targeting and drug delivery. They also play a critical role in tumor diagnosis and treatment, including tumor cell targeting, identification, imaging, and therapeutic methods such as drug delivery, photothermal effects, photodynamic therapy, and immunogenic cell death. The diversity of MOFs with different metal centers, organics, and surface modifications underscores their multifaceted contributions to tumor research and treatment. This review is a summary of these roles and mechanisms. The final section of this review summarizes the current state of the field and discusses prospects that may bring MOFs closer to pharmaceutical applications.
Collapse
Affiliation(s)
- Yingze Hou
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Can Zhu
- Department of Urology, The Second Clinical Medical College of Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kun Chen
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chenbo Wang
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Heng Shi
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
35
|
Dou Y, Wang Y, Tian S, Song Q, Deng Y, Zhang Z, Chen P, Sun Y. Metal-organic framework (MOF)-based materials for pyroptosis-mediated cancer therapy. Chem Commun (Camb) 2024; 60:6476-6487. [PMID: 38853690 DOI: 10.1039/d4cc02084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pyroptosis is regarded as a promising strategy to modulate tumor immune microenvironments for anticancer therapy. Although pyroptosis inducers have been extensively explored in the biomedical field, their drug resistance, off-targeting capacity, and adverse effects do not fulfill the growing demands of therapy. Nowadays, metal-organic frameworks (MOFs) with unique structures and facile synthesis/functionalization characteristics have shown great potential in anticancer therapy. The flexible choices of metal ions and ligands endow MOFs with inherent anti-cancer efficiency, whereas the porous structures in MOFs make them ideal vehicles for delivering various chemodrug-based pyroptosis inducers. In this review, we provide the latest advances in MOF-based materials to evoke pyroptosis and give a brief but comprehensive review of the different types of MOFs for pyroptosis-mediated cancer therapy. Finally, we also discuss the current challenges of MOF-based pyroptosis inducers and their future prospects in this field.
Collapse
Affiliation(s)
- You Dou
- College of Pharmacy, Hubei University of Science & Technology, Xianning 437100, China.
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Shu Tian
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qiao Song
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yun Deng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Zhipeng Zhang
- College of Pharmacy, Hubei University of Science & Technology, Xianning 437100, China.
| | - PeiYao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning 530021, China
| | - Yao Sun
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
36
|
Ji F, Shi C, Shu Z, Li Z. Nanomaterials Enhance Pyroptosis-Based Tumor Immunotherapy. Int J Nanomedicine 2024; 19:5545-5579. [PMID: 38882539 PMCID: PMC11178094 DOI: 10.2147/ijn.s457309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Pyroptosis, a pro-inflammatory and lytic programmed cell death pathway, possesses great potential for antitumor immunotherapy. By releasing cellular contents and a large number of pro-inflammatory factors, tumor cell pyroptosis can promote dendritic cell maturation, increase the intratumoral infiltration of cytotoxic T cells and natural killer cells, and reduce the number of immunosuppressive cells within the tumor. However, the efficient induction of pyroptosis and prevention of damage to normal tissues or cells is an urgent concern to be addressed. Recently, a wide variety of nanoplatforms have been designed to precisely trigger pyroptosis and activate the antitumor immune responses. This review provides an update on the progress in nanotechnology for enhancing pyroptosis-based tumor immunotherapy. Nanomaterials have shown great advantages in triggering pyroptosis by delivering pyroptosis initiators to tumors, increasing oxidative stress in tumor cells, and inducing intracellular osmotic pressure changes or ion imbalances. In addition, the challenges and future perspectives in this field are proposed to advance the clinical translation of pyroptosis-inducing nanomedicines.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Chunyu Shi
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhongmin Li
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
37
|
Ban W, Chen Z, Zhang T, Du T, Huo D, Zhu G, He Z, Sun J, Sun M. Boarding pyroptosis onto nanotechnology for cancer therapy. J Control Release 2024; 370:653-676. [PMID: 38735396 DOI: 10.1016/j.jconrel.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Pyroptosis, a non-apoptotic programmed cellular inflammatory death mechanism characterized by gasdermin (GSDM) family proteins, has gathered significant attention in the cancer treatment. However, the alarming clinical trial data indicates that pyroptosis-mediated cancer therapeutic efficiency is still unsatisfactory. It is essential to integrate the burgeoning biomedical findings and innovations with potent technology to hasten the development of pyroptosis-based antitumor drugs. Considering the rapid development of pyroptosis-driven cancer nanotherapeutics, here we aim to summarize the recent advances in this field at the intersection of pyroptosis and nanotechnology. First, the foundation of pyroptosis-based nanomedicines (NMs) is outlined to illustrate the reliability and effectiveness for the treatment of tumor. Next, the emerging nanotherapeutics designed to induce pyroptosis are overviewed. Moreover, the cross-talk between pyroptosis and other cell death modalities are discussed, aiming to explore the mechanistic level relationships to provide guidance strategies for the combination of different types of antitumor drugs. Last but not least, the opportunities and challenges of employing pyroptosis-based NMs in potential clinical cancer therapy are highlighted.
Collapse
Affiliation(s)
- Weiyue Ban
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhichao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tengda Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Dianqiu Huo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Guorui Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
38
|
Su Y, Liu B, Wang B, Chan L, Xiong C, Lu L, Zhang X, Zhan M, He W. Progress and Challenges in Tumor Ferroptosis Treatment Strategies: A Comprehensive Review of Metal Complexes and Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310342. [PMID: 38221682 DOI: 10.1002/smll.202310342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ferroptosis is a new form of regulated cell death featuring iron-dependent lipid peroxides accumulation to kill tumor cells. A growing body of evidence has shown the potential of ferroptosis-based cancer therapy in eradicating refractory malignancies that are resistant to apoptosis-based conventional therapies. In recent years, studies have reported a number of ferroptosis inducers that can increase the vulnerability of tumor cells to ferroptosis by regulating ferroptosis-related signaling pathways. Encouraged by the rapid development of ferroptosis-driven cancer therapies, interdisciplinary fields that combine ferroptosis, pharmaceutical chemistry, and nanotechnology are focused. First, the prerequisites and metabolic pathways for ferroptosis are briefly introduced. Then, in detail emerging ferroptosis inducers designed to boost ferroptosis-induced tumor therapy, including metal complexes, metal-based nanoparticles, and metal-free nanoparticles are summarized. Subsequently, the application of synergistic strategies that combine ferroptosis with apoptosis and other regulated cell death for cancer therapy, with emphasis on the use of both cuproptosis and ferroptosis to induce redox dysregulation in tumor and intracellular bimetallic copper/iron metabolism disorders during tumor treatment is discussed. Finally, challenges associated with clinical translation and potential future directions for potentiating cancer ferroptosis therapies are highlighted.
Collapse
Affiliation(s)
- Yanhong Su
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Binghan Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Chan Xiong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
39
|
Zhao C, Zheng T, Wang R, Lin X, Hu Z, Zhao Z, Dai Z, Sun D. Synergistically Augmenting Cancer Immunotherapy by Physical Manipulation of Pyroptosis Induction. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:298-312. [PMID: 39398428 PMCID: PMC11466912 DOI: 10.1007/s43657-023-00140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/15/2024]
Abstract
Pyroptosis is a newly recognized type of programmed cell death mediated by the gasdermin family and caspase. It is characterized by the formation of inflammasomes and the following inflammatory responses. Recent studies have elucidated the value of pyroptosis induction in cancer treatment. The inflammatory cytokines produced during pyroptosis can trigger immune responses to suppress malignancy. Physical approaches for cancer treatment, including radiotherapy, light-based techniques (photodynamic and photothermal therapy), ultrasound-based techniques (sonodynamic therapy and focused ultrasound), and electricity-based techniques (irreversible electroporation and radiofrequency ablation), are effective in clinical application. Recent studies have reported that pyroptosis is involved in the treatment process of physical approaches. Manipulating pyroptosis using physical approaches can be utilized in combating cancer, according to recent studies. Pyroptosis-triggered immunotherapy can be combined with the original anti-tumor methods to achieve a synergistic therapy and improve the therapeutic effect. Studies have also revealed that enhancing pyroptosis may increase the sensitivity of cancer cells to some physical approaches. Herein, we present a comprehensive review of the literature focusing on the associations between pyroptosis and various physical approaches for cancer and its underlying mechanisms. We also discussed the role of pyroptosis-triggered immunotherapy in the treatment process of physical manipulation.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Tingting Zheng
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Run Wang
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Xiaona Lin
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Zhengming Hu
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Zhuofei Zhao
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Centre, Peking University, Beijing, 100871 China
| | - Desheng Sun
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, 518036 Guangdong China
| |
Collapse
|
40
|
Liu YJ, Dong SH, Hu WH, Chen QL, Zhang SF, Song K, Han ZC, Li MM, Han ZT, Liu WB, Zhang XS. A multifunctional biomimetic nanoplatform for image-guideded photothermal-ferroptotic synergistic osteosarcoma therapy. Bioact Mater 2024; 36:157-167. [PMID: 38463554 PMCID: PMC10924166 DOI: 10.1016/j.bioactmat.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Much effort has been devoted to improving treatment efficiency for osteosarcoma (OS). However, most current approaches result in poor therapeutic responses, thus indicating the need for the development of other therapeutic options. This study developed a multifunctional nanoparticle, PDA-MOF-E-M, an aggregation of OS targeting, programmed death targeting, and near-infrared (NIR)-aided targeting. At the same time, a multifunctional nanoparticle that utilises Fe-MOFs to create a cellular iron-rich environment and erastin as a ferroptosis inducer while ensuring targeted delivery to OS cells through cell membrane encapsulation is presented. The combination of PDA-MOF-E-M and PTT increased intracellular ROS and LPO levels and induced ferroptosis-related protein expression. A PDA-based PTT combined with erastin showed significant synergistic therapeutic improvement in the anti-tumour efficiency of the nanoparticle in vitro and vivo. The multifunctional nanoparticle efficiently prevents the osteoclasia progression of OS xenograft bone tumors in vivo. Finally, this study provides guidance and a point of reference for clinical approaches to treating OS.
Collapse
Affiliation(s)
- Yu-jie Liu
- Department of Orthopedic Oncology and Spine Tumor Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200001, China
| | - Su-he Dong
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Wen-hao Hu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qiao-ling Chen
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shao-fu Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Kai Song
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zhen-chuan Han
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Meng-meng Li
- Department of Anesthesiology, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zhi-tao Han
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023, Jiangsu, China
| | - Wei-bo Liu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xue-song Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| |
Collapse
|
41
|
Zhang J, Li M, Liu M, Yu Q, Ge D, Zhang J. Metal-Organic Framework Nanomaterials as a Medicine for Catalytic Tumor Therapy: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:797. [PMID: 38727391 PMCID: PMC11085591 DOI: 10.3390/nano14090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Nanomaterials, with unique physical, chemical, and biocompatible properties, have attracted significant attention as an emerging active platform in cancer diagnosis and treatment. Amongst them, metal-organic framework (MOF) nanostructures are particularly promising as a nanomedicine due to their exceptional surface functionalities, adsorption properties, and organo-inorganic hybrid characteristics. Furthermore, when bioactive substances are integrated into the structure of MOFs, these materials can be used as anti-tumor agents with superior performance compared to traditional nanomaterials. In this review, we highlight the most recent advances in MOFs-based materials for tumor therapy, including their application in cancer treatment and the underlying mechanisms.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meiyu Li
- School of Life Science, Jiangsu University, Zhenjiang 212013, China;
| | - Maosong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Yu
- School of Life Science, Jiangsu University, Zhenjiang 212013, China;
| | - Dengfeng Ge
- Shengli Oilfield Central Hospital, 31 Ji’nan Rd, Dongying 257034, China;
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
42
|
Sheikh A, Kesharwani P, Almalki WH, Almujri SS, Dai L, Chen ZS, Sahebkar A, Gao F. Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy. NANO-MICRO LETTERS 2024; 16:188. [PMID: 38698113 PMCID: PMC11065855 DOI: 10.1007/s40820-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
As a new form of regulated cell death, ferroptosis has unraveled the unsolicited theory of intrinsic apoptosis resistance by cancer cells. The molecular mechanism of ferroptosis depends on the induction of oxidative stress through excessive reactive oxygen species accumulation and glutathione depletion to damage the structural integrity of cells. Due to their high loading and structural tunability, nanocarriers can escort the delivery of ferro-therapeutics to the desired site through enhanced permeation or retention effect or by active targeting. This review shed light on the necessity of iron in cancer cell growth and the fascinating features of ferroptosis in regulating the cell cycle and metastasis. Additionally, we discussed the effect of ferroptosis-mediated therapy using nanoplatforms and their chemical basis in overcoming the barriers to cancer therapy.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
43
|
Wu Q, Li Z, Zhou X, Wei Z, Ramadan S, Xu Y, Xu L, Li D. Photothermal Ferrotherapy - Induced Immunogenic Cell Death via Iron-Based Ternary Chalcogenide Nanoparticles Against Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306766. [PMID: 38095479 DOI: 10.1002/smll.202306766] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Indexed: 02/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is highly malignant and prone to recurrence and metastasis. Patients with TNBC have limited therapeutic options, often resulting in poor prognosis. Some new treatments for TNBC have been considered in the past decade, such as immunotherapy, photothermal therapy (PTT), and ferroptosis therapy, that allow the rapid and minimally invasive ablation of cancer. However, a multifunctional nanodrug system with more potent efficacy for TNBC is still needed. The use of iron-based ternary chalcogenide nanoparticles (NPs), namely AgFeS2, is reported, which synergistically combines photothermal therapy, ferrotherapy, and immunotherapy in one system for the treatment of TNBC. AgFeS2 possesses excellent photothermal conversion performance for tumor near-infrared (NIR) phototherapy. Upon photoirradiation, these NPs generate heat, accelerate the release of iron ions, and effectively catalyze the Fenton reaction, resulting in cell apoptosis and ferroptosis. Additionally, AgFeS2 promotes the release of tumor-specific antigens and triggers an immune response via immunogenic cell death (ICD), thereby providing unique synergistic mechanisms for cancer therapy. The present study demonstrates the great potential of iron-based ternary chalcogenide as a new therapeutic platform for a combination of photothermal therapy, ferrotherapy, and immunotherapy for the suppression of TNBC.
Collapse
Affiliation(s)
- Qiang Wu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoyuan Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Zhou
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhewei Wei
- Department of Gastrointestinopancreatic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Sami Ramadan
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Yunsheng Xu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China
| | - Lizhou Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Danyang Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China
| |
Collapse
|
44
|
Ge J, Zhang Z, Zhao S, Chen Y, Min X, Cai Y, Zhao H, Wu X, Zhao F, Chen B. Nanomedicine-induced cell pyroptosis to enhance antitumor immunotherapy. J Mater Chem B 2024; 12:3857-3880. [PMID: 38563315 DOI: 10.1039/d3tb03017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunotherapy is a therapeutic modality designed to elicit or augment an immune response against malignancies. Despite the immune system's ability to detect and eradicate neoplastic cells, certain neoplastic cells can elude immune surveillance and elimination through diverse mechanisms. Therefore, antitumor immunotherapy has emerged as a propitious strategy. Pyroptosis, a type of programmed cell death (PCD) regulated by Gasdermin (GSDM), is associated with cytomembrane rupture due to continuous cell expansion, which results in the release of cellular contents that can trigger robust inflammatory and immune responses. The field of nanomedicine has made promising progress, enabling the application of nanotechnology to enhance the effectiveness and specificity of cancer therapy by potentiating, enabling, or augmenting pyroptosis. In this review, we comprehensively examine the paradigms underlying antitumor immunity, particularly paradigms related to nanotherapeutics combined with pyroptosis; these treatments include chemotherapy (CT), hyperthermia therapy, photodynamic therapy (PDT), chemodynamic therapy (CDT), ion-interference therapy (IIT), biomimetic therapy, and combination therapy. Furthermore, we thoroughly discuss the coordinated mechanisms that regulate these paradigms. This review is expected to enhance the understanding of the interplay between pyroptosis and antitumor immunotherapy, broaden the utilization of diverse nanomaterials in pyroptosis-based antitumor immunotherapy, and facilitate advancements in clinical tumor therapy.
Collapse
Affiliation(s)
- Jingwen Ge
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Zheng Zhang
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Shuangshuang Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Yanwei Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Xin Min
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Yun Cai
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Huajiao Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Xincai Wu
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Feng Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Baoding Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| |
Collapse
|
45
|
Li Y, Qian L, Yang Z, Li S, Wu A, Wang X. Photothermal and ferroptosis synergistic therapy for liver cancer using iron-doped polydopamine nanozymes. Colloids Surf B Biointerfaces 2024; 239:113911. [PMID: 38714079 DOI: 10.1016/j.colsurfb.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
An innovative nanozyme, iron-doped polydopamine (Fe-PDA), which integrates iron ions into a PDA matrix, conferred peroxidase-mimetic activity and achieved a substantial photothermal conversion efficiency of 43.5 %. Fe-PDA mediated the catalysis of H2O2 to produce toxic hydroxyl radicals (•OH), thereby facilitating lipid peroxidation in tumour cells and inducing ferroptosis. Downregulation of solute carrier family 7 no. 11 (SLC7A11) and solute carrier family 3 no. 2 (SLC3A2) in System Xc- resulted in decreased intracellular glutathione (GSH) production and inactivation of the nuclear factor erythroid 2-related factor 2 (NRF2)-glutathione peroxidase 4 (GPX4) pathway, contributing to ferroptosis. Moreover, the application of photothermal therapy (PTT) enhanced the effectiveness of chemodynamic therapy (CDT), accelerating the Fenton reaction for targeted tumour eradication while sparing adjacent non-cancerous tissues. In vivo experiments revealed that Fe-PDA significantly hampered tumour progression in mice, emphasizing the potential of the dual-modality treatment combining CDT and PTT for future clinical oncology applications.
Collapse
Affiliation(s)
- Yunchun Li
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Linqun Qian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhouping Yang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
46
|
Cheng M, Kong Q, Tian Q, Cai W, Wang C, Yuan M, Wang W, Wang P, Yan W. Osteosarcoma-targeted Cu and Ce based oxide nanoplatform for NIR II fluorescence/magnetic resonance dual-mode imaging and ros cascade amplification along with immunotherapy. J Nanobiotechnology 2024; 22:151. [PMID: 38575943 PMCID: PMC10993435 DOI: 10.1186/s12951-024-02400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND As the lethal bone tumor, osteosarcoma often frequently occurs in children and adolescents with locally destructive and high metastasis. Distinctive kinds of nanoplatform with high therapeutical effect and precise diagnosis for osteosarcoma are urgently required. Multimodal optical imaging and programmed treatment, including synergistic photothermal-chemodynamic therapy (PTT-CDT) elicits immunogenetic cell death (ICD) is a promising strategy that possesses high bio-imaging sensitivity for accurate osteosarcoma delineating as well as appreciable therapeutic efficacy with ignorable side-effects. METHODS AND RESULTS In this study, mesoporous Cu and Ce based oxide nanoplatform with Arg-Gly-Asp (RGD) anchoring is designed and successfully constructed. After loading with indocyanine green, this nanoplatform can be utilized for precisely targeting and efficaciously ablating against osteosarcoma via PTT boosted CDT and the closely following ICD stimulation both in vitro and in vivo. Besides, it provides off-peak fluorescence bio-imaging in the second window of near-infrared region (NIR II, 1000-1700 nm) and Magnetic resonance signal, serves as the dual-mode contrast agents for osteosarcoma tissue discrimination. CONCLUSION Tumor targeted Cu&Ce based mesoporous nanoplatform permits efficient osteosarcoma suppression and dual-mode bio-imaging that opens new possibility for effectively diagnosing and inhibiting the clinical malignant osteosarcoma.
Collapse
Affiliation(s)
- Mo Cheng
- Department of Musculoskeletal Surgery of Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Qingjie Kong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Qing Tian
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201799, P. R. China
| | - Weiluo Cai
- Department of Musculoskeletal Surgery of Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Chunmeng Wang
- Department of Musculoskeletal Surgery of Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Minjia Yuan
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Qiran Biotechnology Co., Ltd, Shanghai, 201702, China
| | - Wenxing Wang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China.
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
| | - Wangjun Yan
- Department of Musculoskeletal Surgery of Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
47
|
Song Y, Xu X, Wang Z, Zhao Y. Metal-Organic Framework-Based Nanomedicines for Ferroptotic Cancer Therapy. Adv Healthc Mater 2024; 13:e2303533. [PMID: 38221753 DOI: 10.1002/adhm.202303533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Indexed: 01/16/2024]
Abstract
As an iron-dependent, non-apoptosis, regulated cell death (RCD) modality, ferroptosis has gained growing attention for cancer therapy. With the development of nanomaterials in the biomedical field, ferroptotic cancer nanomedicine is extensively investigated. Amongst various nanomaterials, metal-organic frameworks (MOFs) are hybridized porous materials consisting of metal ions or clusters bridged by organic linkers. The superior properties of MOFs, such as high porosity and cargo loading, ease of surface modification, and good biocompatibility, make them appealing in inducing or sensitizing ferroptotic cell death. There are remarkable achievements in the field of MOF-based ferroptosis cancer therapy. However, this topic is not reviewed. This review will introduce the fundamentals of MOF and ferroptosis machinery, summarize the recent progress of MOF-based ferroptotic anticancer drug delivery, discuss the benefits and problems of MOFs as vehicles and sensitizers for cancer ferroptosis, and provide the perspective on future research direction on this promising field.
Collapse
Affiliation(s)
- Yue Song
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Tianjin University, Tianjin, 300072, China
| | - Xinran Xu
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University Affiliated Maternity Hospital, Tianjin, 300100, China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Tianjin University, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
48
|
Wang X, Zhang W, Wang Y, Zhu X, Liu Z, Liu M, Wu Z, Li B, Liu S, Liao S, Zhu P, Liu B, Li C, Wang Y, Chen Z. Logic "AND Gate Circuit"-Based Gasdermin Protein Expressing Nanoplatform Induces Tumor-Specific Pyroptosis to Enhance Cancer Immunotherapy. ACS NANO 2024; 18:6946-6962. [PMID: 38377037 DOI: 10.1021/acsnano.3c09405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pyroptosis mediated by gasdermin protein has shown great potential in cancer immunotherapies. However, the low expression of gasdermin proteins and the systemic toxicity of nonspecific pyroptosis limit its clinical application. Here, we designed a synthetic biology strategy to construct a tumor-specific pyroptosis-inducing nanoplatform M-CNP/Mn@pPHS, in which a pyroptosis-inducing plasmid (pPHS) was loaded onto a manganese (Mn)-doped calcium carbonate nanoparticle and wrapped in a tumor-derived cell membrane. M-CNP/Mn@pPHS showed an efficient tumor targeting ability. After its internalization by tumor cells, the degradation of M-CNP/Mn@pPHS in the acidic endosomal environment allowed the efficient endosomal escape of plasmid pPHS. To trigger tumor-specific pyroptosis, pPHS was designed according to the logic "AND gate circuit" strategy, with Hif-1α and Sox4 as two input signals and gasdermin D induced pyroptosis as output signal. Only in cells with high expression of Hif-1α and Sox4 simultaneously will the output signal gasdermin D be expressed. Since Hif-1α and Sox4 are both specifically expressed in tumor cells, M-CNP/Mn@pPHS induces the tumor-specific expression of gasdermin D and thus pyroptosis, triggering an efficient immune response with little systemic toxicity. The Mn2+ released from the nanoplatform further enhanced the antitumor immune response by stimulating the cGAS-STING pathway. Thus, M-CNP/Mn@pPHS efficiently inhibited tumor growth with 79.8% tumor regression in vivo. We demonstrate that this logic "AND gate circuit"-based gasdermin nanoplatform is a promising strategy for inducing tumor-specific pyroptosis with little systemic toxicity.
Collapse
Affiliation(s)
- Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenyan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zimai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meiyi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zixian Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingyu Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shixin Liao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Center for Stem Cell and Regenerative Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Benyu Liu
- Center for Stem Cell and Regenerative Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Zhongke Jianlan Medical Research Institute, Beijing 100190, China
| | - Yongchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
49
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
50
|
Liu J, Chen T, Liu X, Li Z, Zhang Y. Engineering materials for pyroptosis induction in cancer treatment. Bioact Mater 2024; 33:30-45. [PMID: 38024228 PMCID: PMC10654002 DOI: 10.1016/j.bioactmat.2023.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer remains a significant global health concern, necessitating the development of innovative therapeutic strategies. This research paper aims to investigate the role of pyroptosis induction in cancer treatment. Pyroptosis, a form of programmed cell death characterized by the release of pro-inflammatory cytokines and the formation of plasma membrane pores, has gained significant attention as a potential target for cancer therapy. The objective of this study is to provide a comprehensive overview of the current understanding of pyroptosis and its role in cancer treatment. The paper discusses the concept of pyroptosis and its relationship with other forms of cell death, such as apoptosis and necroptosis. It explores the role of pyroptosis in immune activation and its potential for combination therapy. The study also reviews the use of natural, biological, chemical, and multifunctional composite materials for pyroptosis induction in cancer cells. The molecular mechanisms underlying pyroptosis induction by these materials are discussed, along with their advantages and challenges in cancer treatment. The findings of this study highlight the potential of pyroptosis induction as a novel therapeutic strategy in cancer treatment and provide insights into the different materials and mechanisms involved in pyroptosis induction.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - XianLing Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Oncology, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|