1
|
Wang C, Wu H, Niu Q, Yan X, Wang X. Light-Controlled Soft Switches for Optical Logic Gate Operations. SENSORS (BASEL, SWITZERLAND) 2025; 25:2051. [PMID: 40218563 PMCID: PMC11991527 DOI: 10.3390/s25072051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
While liquid crystal elastomers (LCEs) show promise for diverse soft actuators due to their strong stimulus responsiveness, limited investigation into their light perception and processing restricts their wider use in intelligent systems. This study employs a hollow double-layer structure to design light-controlled logic soft switches based on LCEs. The design realizes digital logic circuits including AND gates, OR gates, and NOT gates, as well as an optical switch array capable of converting light signals into visualized digital signals. These light-controlled soft switches exhibit strong photothermal responsiveness (~12 s), high programmability, and excellent cyclic stability (>500 times). This research provides a new perspective on light-controlled logic soft switches and their applications in logic circuits.
Collapse
Affiliation(s)
- Chuang Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (C.W.); (H.W.)
| | - Hao Wu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (C.W.); (H.W.)
| | - Quanwang Niu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (C.W.); (H.W.)
| | - Xiaohong Yan
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (C.W.); (H.W.)
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
| | - Xiangfu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (C.W.); (H.W.)
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
| |
Collapse
|
2
|
Chen Q, Huang J, Feng X, Xie H, Zhou S. Controlling Self-Oscillation of a Single-Layer Liquid Crystal Elastomer at the Air-Water Interface via Light Programming for Water Strider-Inspired Aquatic Robots. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17433-17444. [PMID: 40042360 DOI: 10.1021/acsami.5c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Biomimicking aquatic organisms offers many opportunities for designing intelligent robots that can freely move on water. However, most works were focused on multilayered materials or assembled structures and faced limitations in stability, versatility, and motion navigation. Here, we develop an assembly-free water-strider-like aquatic robot using a single layer of light-programmable liquid-crystal elastomer (LCE) that could be used to create asymmetric structures. The LCE strider mimics both the shape and functions of natural water striders; it is designed with four legs, with the fore and hind legs being programmed respectively via light. Consequently, the LCE strider shows self-oscillation and self-propulsion behaviors on low-grade thermal water with a temperature gradient at the air-water interface, owing to unbalanced changes in the contact areas and tensions between the legs and water. Furthermore, the trajectories of the LCE strider are manipulated by NIR light after selectively depositing polydopamine with photothermal conversion. In this way, path navigation is realized, that is, moving straight and on-demand turning, similar to the movement of natural water striders. This study should inspire the development of soft intelligent robots using shape-morphing materials.
Collapse
Affiliation(s)
- Qiuyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinhui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xinran Feng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
3
|
He J, Huang P, Li B, Xing Y, Wu Z, Lee TC, Liu L. Untethered Soft Robots Based on 1D and 2D Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413648. [PMID: 39838723 DOI: 10.1002/adma.202413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials. First, the performance of soft actuators designed with different structures is compared. Then, the development of basic locomotion forms, including crawling, jumping, swimming, rolling, gripping, and multimodal, mimicking biological motion mechanisms under dynamic stimuli, is discussed. Subsequently, various self-sustained movements based on imbalance mechanisms under static stimuli are introduced, including light tracking, self-oscillating, self-crawling, self-rolling, and flying. Following that, the progress in soft actuators integrated with additional functionalities such as sensing, energy harvesting, and storage is summarized. Finally, the challenges faced in this field and the prospects for future development are discussed.
Collapse
Affiliation(s)
- Jingwen He
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tung-Chun Lee
- Institute for Materials Discovery, University College London (UCL), London, WC1H 0AJ, UK
- Department of Chemistry, University College London (UCL), London, WC1H 0AJ, UK
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
4
|
Zhang Y, Wang T, Wang F, Li X, Ma H, Sun Y. Sunlight-Drivable Composite Film Using Carbon Nanopowder-doped PVDF and Liquid Crystal Polymer Network. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5352-5359. [PMID: 39723939 DOI: 10.1021/acsami.4c17962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials. In this paper, we present a composite film fabricated using poly(vinylidene fluoride) doped with carbon nanopowders (PC) as a photothermal conversion material combined with a hybrid-alignment liquid crystal polymer network film. Under the midday sun during summer, the composite film is heated from room temperature to 74.5 °C quickly, resulting in a substantial angle change of 235°. Additionally, the actuators fabricated by this composite film can demonstrate phototactic and light-avoiding rolling behaviors. This sunlight-drivable composite film shows considerable promise for the research and development of bionic devices powered by natural light.
Collapse
Affiliation(s)
- Yunbo Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Tianxiong Wang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Feifei Wang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoshuai Li
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hongmei Ma
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Yubao Sun
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
5
|
Liu J, Yu X, Yu Z, Niu J, Zhao N, Shao S, Jia P, Wang J. Multiphase Janus Azobenzene Inverse Opal Membrane toward On-Demand Photocontrolled Motion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2041-2047. [PMID: 39693215 DOI: 10.1021/acsami.4c18563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Azobenzene actuators have generated extensive research investment in the field of soft robots, artificial muscles, etc., based on the typical photoresponsive trans-cis isomerization. However, it remains challenging to achieve multiphase actuation at the gas-liquid interface and liquid phase. To solve these problems, this paper demonstrated a simple fabrication method of a Janus azobenzene inverse opal membrane with one side having a polydomain azobenzene inverse opal structure and the other side having a monodomain bulk azobenzene polymer. The introduction of an inverse opal structure increases the interaction area between the liquid and polymer network. The proposed design can freely swim in any direction at the air-liquid interface based on the Marangoni effect or move forward in the liquid phase based on bubble propulsion under UV irradiation. This work is of great significance for the design and fabrication of multiphase photo actuators.
Collapse
Affiliation(s)
- Junchao Liu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaojiao Yu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Zhong Yu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Jinfen Niu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Ningning Zhao
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Songtao Shao
- School of Mathematics and Data Science, Shaanxi University of Science Technology,, Xi'an Wei-yang University Park, Xi'an710021, China
| | - Pan Jia
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jingxia Wang
- Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Xue S, Shi Z, Wang Z, Tan H, Gao F, Zhang Z, Ye Z, Nian S, Han T, Zhang J, Zhao Z, Tang BZ, Zhang Q. Fluorescent robust photoactuator via photo-crosslinking induced single-layered janus polyimide. Nat Commun 2024; 15:10084. [PMID: 39572542 PMCID: PMC11582805 DOI: 10.1038/s41467-024-54386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Advanced smart polymer materials with the ability of reversible deformation under external stimuli hold great potential in robotics, soft machines, and flexible electronics. However, the complexity and low efficiency for fabricating actuators along with their limited functionality hinder further progress. Here an efficient and mild catalyst-free thiol-yne click polymerization was developed to fabricate photosensitive polyimide (PI) films. Then the fluorescent robust photoactuators with single-layered janus structure were directly obtained via UV assisted photo-crosslinking of the films, exhibiting reversible response driven by a pronounced mismatch in expansion between the front and back sides of the films. Achieving selective, non-uniform spatial distribution within the PI films, rapid and reversible complex morphing of the actuators, along with the capabilities for encrypting, reading, and erasing fluorescent information-all through the use of a single UV light source-becomes straightforward. The robust mechanical property and driving ability of these actuators enable the conversion of light energy into obvious motion even under heavy loads and the leaping through the storage and release of energy, ensuring their potential for practical applications that require durability and reliability.
Collapse
Affiliation(s)
- Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zhipanxin Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zaiyu Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Shifeng Nian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Sun Y, Men Y, Liu S, Wang X, Li C. Liquid crystalline elastomer self-oscillating fiber actuators fabricated from soft tubular molds. SOFT MATTER 2024; 20:4246-4256. [PMID: 38747973 DOI: 10.1039/d4sm00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The self-oscillation of objects that perform continuous and periodic motions upon unchanging and constant stimuli is highly important for intelligent actuators, advanced robotics, and biomedical machines. Liquid crystalline elastomer (LCE) materials are superior to traditional stimuli-responsive polymeric materials in the development of self-oscillators because of their reversible, large and anisotropic shape-changing ability, fast response ability and versatile structural design. In addition, fiber-shaped oscillators have attracted much interest due to their agility, flexibility and diverse oscillation modes. Herein, we present a strategy for fabricating fiber-shaped LCE self-oscillators using soft tubes as molds. Through the settlement of different configuration states of the soft tubes, the prepared fiber-shaped LCE oscillators can perform continuous rotational self-oscillation or up-and-down shifting self-oscillation under constant light stimuli, which are realized by photoinduced repetitive self-winding motion and self-waving motion, respectively. The mechanism of self-oscillating movements is attributed to the local temperature oscillation of LCE fibers caused by repetitive self-shadowing effects. LCE self-oscillators can operate stably over many oscillating cycles without obvious performance attenuation, revealing good robustness. Our work offers a versatile way by which LCE self-oscillators can be conveniently designed and fabricated in bulk and at low cost, and broadens the road for developing self-oscillating materials for biological robotics and health care machines.
Collapse
Affiliation(s)
- Yuying Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yanli Men
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Shiyu Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
8
|
Deng Z, Zhang H, Priimagi A, Zeng H. Light-Fueled Nonreciprocal Self-Oscillators for Fluidic Transportation and Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209683. [PMID: 36525600 DOI: 10.1002/adma.202209683] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Light-fueled self-oscillators based on soft actuating materials have triggered novel designs for small-scale robotic constructs that self-sustain their motion at non-equilibrium states and possess bioinspired autonomy and adaptive functions. However, the motions of most self-oscillators are reciprocal, which hinders their use in sophisticated biomimetic functions such as fluidic transportation. Here, an optically powered soft material strip that can perform nonreciprocal, cilia-like, self-sustained oscillation under water is reported. The actuator is made of planar-aligned liquid crystal elastomer responding to visible light. Two laser beams from orthogonal directions allow for piecewise control over the strip deformation, enabling two self-shadowing effects coupled in one single material to yield nonreciprocal strokes. The nonreciprocity, stroke pattern and handedness are connected to the fluidic pumping efficiency, which can be controlled by the excitation conditions. Autonomous microfluidic pumping in clockwise and anticlockwise directions, translocation of a micro-object by liquid propulsion, and coupling between two oscillating strips through liquid medium interaction are demonstrated. The results offer new concepts for non-equilibrium soft actuators that can perform bio-like functions under water.
Collapse
Affiliation(s)
- Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI 33101, Finland
| | - Hang Zhang
- Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI 33101, Finland
| | - Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI 33101, Finland
| |
Collapse
|
9
|
Ji Y, Yu H. Manipulation of photoresponsive liquid-crystalline polymers and their applications: from nanoscale to macroscale. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:10246-10266. [DOI: 10.1039/d4tc02213k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
We summarize the molecular design of photoresponsive liquid-crystalline polymers, manipulation at multiple scales and various applications based on their intrinsic properties, providing an opportunity for future development in this field.
Collapse
Affiliation(s)
- Yufan Ji
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Wu Z, Ma J, Xu R, Zhong S, Zhang X, Gong M, Wang G. Light-Modulated Morphological Transformation of Spiropyran Derivative from Nanosphere to Nanorod. Macromol Rapid Commun 2023; 44:e2300360. [PMID: 37566799 DOI: 10.1002/marc.202300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The construction of tunable morphological systems has important implications for understanding the mechanism of molecular self-assembly. In this study, a spiropyran derivative M1 is reported with light-responsive assembly morphology, which can be tuned from nanosphere to nanorod by ultraviolet light irradiation. The absorption spectra show that M1 molecules are transformed from closed-ring (SP) isomers into open-ring (MC) isomers and start to form H-aggregates with increasing irradiation time. Density functional theory calculations indicate that MC-MC isomers possess stronger binding energy than SP-SP isomers. The MC isomers may thus facilitate the dissociation of the SP-SP aggregates and promote the change of self-assembled morphology with the aid of stronger π-π stackings and dipole-dipole interactions. The research gives an effective method for modulating the morphology of assemblies, with great potential for applications in smart materials.
Collapse
Affiliation(s)
- Zhen Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiewen Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruoyu Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shijie Zhong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Wu Z, Xiao L, Xu R, Zhong S, Gong M, Wang G. UV-Light-Induced Morphological Transformation of Spiropyran Assemblies from Irregular Sheet-like Structures to Nanospheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13946-13952. [PMID: 37736671 DOI: 10.1021/acs.langmuir.3c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Studies on self-assembling systems with a controllable morphology responding to light stimulation are significant for revealing the process and mechanism of assembly. Here, a molecule of spiropyran derivative (SP) possessing photoresponsive assembly morphology is constructed. SP self-assembles into irregular sheet-like structures whose morphology can be significantly transformed into regular nanospheres under continuous ultraviolet light stimulation. The UV-vis absorption spectra indicate that 56% of SP are isomerized from closed-ring form (SPC) to open-ring form (SPO) with color changes from colorless to magenta. Furthermore, theoretical calculations demonstrate that SPO-SPO aggregates possess stronger van der Waals forces than do SPC-SPC aggregates and tend to form stable intermediates combined with SPO isomers. Therefore, the isomerization of SP from SPC to SPO and the differences in intermolecular interactions are important factors in the morphological transition. Our study provides an efficient strategy to modulate the assembled morphology, which holds great promise to be applied in the field of smart materials.
Collapse
Affiliation(s)
- Zhen Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Leping Xiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruoyu Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shijie Zhong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
12
|
Chychłowski MS, Kajkowska M, Jankiewicz B, Bartosewicz B, Woliński TR, Lesiak P. Photopolymerization of 1D photonic structures induced by nematic-isotropic phase transition in liquid crystal. SOFT MATTER 2023; 19:3398-3404. [PMID: 37129105 DOI: 10.1039/d3sm00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, two types of polymer-stabilized periodic structures created by photopolymerization of a nematic liquid crystal confined in a cylindrical structure are presented. Both types of structures were induced by nematic-isotropic phase transition in liquid crystal doped with gold nanoparticles. The first type of structure was created by stabilizing periodic phase separation at the nematic-isotropic phase transition temperature. As a result, a periodic structure with two distinct molecular orientations of nematic liquid crystal was achieved. The period of this structure was equal to the period induced by nematic-isotropic phase separation. The second type of structure, also related to the phase transition, was created due to an induced periodic density change of gold nanoparticles in the sample volume. Through photopolymerization it was possible to preclude the dispersion of gold nanoparticles while preserving the periodicity. An increased concentration of gold nanoparticles caused periodic defects in molecular orientation of the liquid crystal. Both types of structures were stable at room temperature. Consequently, two types of 1D photonic structures stabilized by photopolymerization are presented.
Collapse
Affiliation(s)
- Miłosz S Chychłowski
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662, Poland.
| | - Marta Kajkowska
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662, Poland.
| | - Bartłomiej Jankiewicz
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, Warsaw 00-908, Poland
| | - Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, Warsaw 00-908, Poland
| | - Tomasz R Woliński
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662, Poland.
| | - Piotr Lesiak
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662, Poland.
| |
Collapse
|
13
|
Jayoti D, Peeketi AR, Kumbhar PY, Swaminathan N, Annabattula RK. Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18362-18371. [PMID: 36975405 DOI: 10.1021/acsami.3c02472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.
Collapse
Affiliation(s)
- Divya Jayoti
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akhil Reddy Peeketi
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pramod Yallappa Kumbhar
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narasimhan Swaminathan
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ratna Kumar Annabattula
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Alipanah Z, Zakerhamidi MS, Movla H, Azizi B, Muševič I, Ranjkesh A. Light-Powered Liquid Crystal Polymer Network Actuator Using TiO 2 Nanoparticles as an Inorganic Ultraviolet-Light Absorber. ACS OMEGA 2023; 8:10555-10564. [PMID: 36969424 PMCID: PMC10034986 DOI: 10.1021/acsomega.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Recently, the design and fabrication of light-powered actuators have attracted immense attention because of the manufacturing of intelligent soft robots and innovative self-regulating devices. Accordingly, a liquid crystal polymer network (LCN) provides a promising platform due to its reversible and multistimulus-responsive shape-changing behaviors. In particular, doping nanoparticles with exclusive properties into the LCN can produce interesting results. In this work, we investigated a TiO2 nanoparticle-based LCN polymer light-powered actuator. TiO2 nanoparticles as an inorganic ultraviolet (UV)-light absorber can substantially affect the LCN polymer's oscillatory behavior. Our results demonstrate that the oscillation characteristics are directly influenced by the presence of nanoparticles, and we studied the influencing factors. The effectiveness of the elastic modulus, thermomechanical force, and curvature was investigated using different weight percentages of TiO2 nanoparticles. Our results show that, in the presence of TiO2 nanoparticles, the polymer chain order and inter-chain interactions in the polymer matrix as well as the structural deformation of relevant polymer surfaces are changed.
Collapse
Affiliation(s)
- Zhila Alipanah
- Faculty
of Physics, University of Tabriz, Tabriz 5166614761, Iran
| | - Mohammad Sadegh Zakerhamidi
- Faculty
of Physics, University of Tabriz, Tabriz 5166614761, Iran
- Photonics
Center of Excellence, University of Tabriz, Tabriz 5166614761, Iran
| | - Hossein Movla
- Faculty
of Physics, University of Tabriz, Tabriz 5166614761, Iran
| | - Batool Azizi
- Central
laboratory, University of Tabriz, Tabriz 5166614761, Iran
| | - Igor Muševič
- Condensed
Matter Department, J. Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia
| | - Amid Ranjkesh
- Condensed
Matter Department, J. Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia
| |
Collapse
|
15
|
Zhang X, Yao L, Yan H, Zhang Y, Han D, He Y, Li C, Zhang J. Optical wavelength selective actuation of dye doped liquid crystalline elastomers by quasi-daylight. SOFT MATTER 2022; 18:9181-9196. [PMID: 36437786 DOI: 10.1039/d2sm01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We explore obtaining different photo responses of liquid crystalline elastomer (LCE) materials through modulating the optical wavelengths in order to promote the development of precise photocontrol on LCE actuators, and thus study the effect of light-absorbing dyes with different absorption bands on the selective actuation of LCE materials. The dye-doped LCEs were prepared by incorporating special visible absorber dyes into thiol-acrylate main chain LCE (MC-LCE) matrices. The dyes showed photo actuation performance to LCEs due to the photothermal effects. But, every dye-doped LCE could be effectively actuated by light irradiation whose wavelength was inside its absorption band, but could not be effectively actuated by the light whose wavelength was beyond its absorption band. Wavelength selective actuation effects, no matter actuating deformation or actuating force, could be remarkably demonstrated by these dye-doped LCEs through filtering the same quasi-daylight source to be different wavelength bands. Our work opens up a significant way for the precise and convenient photo actuation of LCE actuators, while expanding the utilization potential of quasi-daylight, and further natural sunlight.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liru Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Huixuan Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yuhe Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Dongxu Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yifan He
- Institute of Regulatory Science, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| |
Collapse
|
16
|
Astam MO, Lyu P, Peixoto J, Liu D. Self-regulating electrical rhythms with liquid crystal oligomer networks in hybrid circuitry. SOFT MATTER 2022; 18:7236-7244. [PMID: 36102867 DOI: 10.1039/d2sm01117d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-regulation is an essential aspect in the practicality of electronic systems, ranging from household heaters to robots for industrial manufacturing. In such devices, self-regulation is conventionally achieved through separate sensors working in tandem with control modules. In this paper, we harness the reversible actuating properties of liquid crystal oligomer network (LCON) polymers to design a self-regulated oscillator. A dynamic equilibrium is achieved by applying a thermally-responsive and electrically-functionalized LCON film as a dual-action component, namely as a combined electrical switch and composite actuating sensor, within a circuit. This hybrid circuit configuration, consisting of both inorganic and organic material, generates a self-regulated feedback loop which cycles regularly and indefinitely. The feedback loop cycle frequency is tunable between approximately 0.08 and 0.87 Hz by altering multiple factors, such as supplied power or LCON chemistry. Our research aims to drive the material-to-device transition of stimuli-responsive LCONs, striving towards applications in electronic soft robotics.
Collapse
Affiliation(s)
- Mert O Astam
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Pengrong Lyu
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Jacques Peixoto
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Danqing Liu
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
17
|
Oscillating light engine realized by photothermal solvent evaporation. Nat Commun 2022; 13:5621. [PMID: 36153322 PMCID: PMC9509359 DOI: 10.1038/s41467-022-33374-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Continuous mechanical work output can be generated by using combustion engines and electric motors, as well as actuators, through on/off control via external stimuli. Solar energy has been used to generate electricity and heat in human daily life; however, the direct conversion of solar energy to continuous mechanical work has not been realized. In this work, a solar engine is developed using an oscillating actuator, which is realized through an alternating volume decrease of each side of a polypropylene/carbon black polymer film induced by photothermal-derived solvent evaporation. The anisotropic solvent evaporation and fast gradient diffusion in the polymer film sustains oscillating bending actuation under the illumination of divergent light. This light-driven oscillator shows excellent oscillation performance, excellent loading capability, and high energy conversion efficiency, and it can never stop with solvent supply. The oscillator can cyclically lift up a load and output work, exhibiting a maximum specific work of 30.9 × 10−5 J g−1 and a maximum specific power of 15.4 × 10−5 W g−1 under infrared light. This work can inspire the development of autonomous devices and provide a design strategy for solar engines. Developing an oscillating actuator that can directly convert solar energy into mechanical energy is highly desirable. Here, authors report a solvent-assisted light-driven oscillator by porous film that achieves excellent oscillating actuation performance and can even oscillate by carrying a load under light irradiation.
Collapse
|
18
|
Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications. Molecules 2022; 27:molecules27144330. [PMID: 35889204 PMCID: PMC9317631 DOI: 10.3390/molecules27144330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Liquid crystal elastomers (LCEs) are programmable deformable materials that can respond to physical fields such as light, heat, and electricity. Photothermal-driven LCE has the advantages of accuracy and remote control and avoids the requirement of high photon energy for photochemistry. In this review, we discuss recent advances in photothermal LCE materials and investigate methods for mechanical alignment, external field alignment, and surface-induced alignment. Advances in the synthesis and orientation of LCEs have enabled liquid crystal elastomers to meet applications in optics, robotics, and more. The review concludes with a discussion of current challenges and research opportunities.
Collapse
|