1
|
Hossain MN, Zhang L, Neagu R, Sun S. Exploring the properties, types, and performance of atomic site catalysts in electrochemical hydrogen evolution reactions. Chem Soc Rev 2025; 54:3323-3386. [PMID: 39981628 DOI: 10.1039/d4cs00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Atomic site catalysts (ASCs) have recently gained prominence for their potential in the electrochemical hydrogen evolution reaction (HER) due to their exceptional activity, selectivity, and stability. ASCs with individual atoms dispersed on a support material, offer expanded surface areas and increased mass efficiency. This is because each atom in these catalysts serves as an active site, which enhances their catalytic activity. This review is focused on providing a detailed analysis of ASCs in the context of the HER. It will delve into their properties, types, and performance to provide a comprehensive understanding of their role in electrochemical HER processes. The introduction part underscores HER's significance in transitioning to sustainable energy sources and emphasizes the need for innovative catalysts like ASCs. The fundamentals of the HER section emphasizes the importance of understanding the HER and highlights the key role that catalysts play in HER. The review also explores the properties of ASCs with a specific emphasis on their atomic structure and categorizes the types based on their composition and structure. Within each category of ASCs, the review discusses their potential as catalysts for the HER. The performance section focuses on a thorough evaluation of ASCs in terms of their activity, selectivity, and stability in HER. The performance section assesses ASCs in terms of activity, selectivity, and stability, delving into reaction mechanisms via experimental and theoretical approaches, including density functional theory (DFT) studies. The review concludes by addressing ASC-related challenges in HER and proposing future research directions, aiming to inspire further innovation in sustainable catalysts for electrochemical HER.
Collapse
Affiliation(s)
- M Nur Hossain
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Lei Zhang
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Roberto Neagu
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifque (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
2
|
Tran DT, Tran PKL, Malhotra D, Nguyen TH, Nguyen TTA, Duong NTA, Kim NH, Lee JH. Current status of developed electrocatalysts for water splitting technologies: from experimental to industrial perspective. NANO CONVERGENCE 2025; 12:9. [PMID: 39915370 PMCID: PMC11802996 DOI: 10.1186/s40580-024-00468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
The conversion of electricity into hydrogen (H2) gas through electrochemical water splitting using efficient electrocatalysts has been one of the most important future technologies to create vast amounts of clean and renewable energy. Low-temperature electrolyzer systems, such as proton exchange membrane water electrolyzers, alkaline water electrolyzers, and anion exchange membrane water electrolyzers are at the forefront of current technologies. Their performance, however, generally depends on electricity costs and system efficiency, which can be significantly improved by developing high-performance electrocatalysts to enhance the kinetics of both the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction. Despite numerous active research efforts in catalyst development, the performance of water electrolysis remains insufficient for commercialization. Ongoing research into innovative electrocatalysts and an understanding of the catalytic mechanisms are critical to enhancing their activity and stability for electrolyzers. This is still a focus at academic institutes/universities and industrial R&D centers. Herein, we provide an overview of the current state and future directions of electrocatalysts and water electrolyzers for electrochemical H2 production. Additionally, we describe in detail the technological framework of electrocatalysts and water electrolyzers for H2 production as utilized by relevant global companies.
Collapse
Affiliation(s)
- Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Phan Khanh Linh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Deepanshu Malhotra
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Thanh Hai Nguyen
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Tran Thien An Nguyen
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nguyen Tram Anh Duong
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
- Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
3
|
Peng C, Pang R, Li J, Wang E. Current Advances on the Single-Atom Nanozyme and Its Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211724. [PMID: 36773312 DOI: 10.1002/adma.202211724] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Shi TM, Chen XF, Ti H. Ferroptosis-Based Therapeutic Strategies toward Precision Medicine for Cancer. J Med Chem 2024; 67:2238-2263. [PMID: 38306267 DOI: 10.1021/acs.jmedchem.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by the dysregulation of iron metabolism and the accumulation of lipid peroxides. This nonapoptotic mode of cell death is implicated in various physiological and pathological processes. Recent findings have underscored its potential as an innovative strategy for cancer treatment, particularly against recalcitrant malignancies that are resistant to conventional therapies. This article focuses on ferroptosis-based therapeutic strategies for precision cancer treatment, covering the molecular mechanisms of ferroptosis, four major types of ferroptosis inducers and their inhibitory effects on diverse carcinomas, the detection of ferroptosis by fluorescent probes, and their implementation in image-guided therapy. These state-of-the-art tactics have manifested enhanced selectivity and efficacy against malignant carcinomas. Given that the administration of ferroptosis in cancer therapy is still at a burgeoning stage, some major challenges and future perspectives are discussed for the clinical translation of ferroptosis into precision cancer treatment.
Collapse
Affiliation(s)
- Tong-Mei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou, Guangzhou 510070, P. R. China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Cheng G, Chen F, Li S, Hu Y, Dai Z, Hu Z, Gan Z, Sun Y, Zheng X. Precise design of dual active-site catalysts for synergistic catalytic therapy of tumors. J Mater Chem B 2024; 12:1512-1522. [PMID: 38251988 DOI: 10.1039/d3tb02145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A proven and promising method to improve the catalytic performance of single-atom catalysts through the interaction between bimetallic atoms to change the active surface sites or adjust the catalytic sites of reactants is reported. In this work, we used an iron-platinum bimetallic reagent as the metal source to precisely synthesise covalent organic framework-derived diatomic catalysts (FePt-DAC/NC). Benefiting from the coordination between the two metal atoms, the presence of Pt single atoms can successfully regulate Fe-N3 activity. FePt-DAC/NC exhibited a stronger ability to catalyze H2O2 to produce toxic hydroxyl radicals than Fe single-atom catalysts (Fe-SA/NC) to achieve chemodynamic therapy of tumors (the catalytic efficiency improved by 186.4%). At the same time, under the irradiation of an 808 nm laser, FePt-DAC/NC exhibited efficient photothermal conversion efficiency to achieve photothermal therapy of tumors. Both in vitro and in vivo results indicate that FePt-DAC/NC can efficiently suppress tumor cell growth by a synergistic therapeutic effect with photothermally augmented nanocatalytic therapy. This novel bimetallic dual active-site monodisperse catalyst provides an important example for the application of single-atom catalysts in the biomedical field, highlighting its promising clinical potential.
Collapse
Affiliation(s)
- Guodong Cheng
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- Qilu Normal University, Jinan, 250013, P. R. China
| | - Fuying Chen
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Shulian Li
- Linyi Cancer Hospital, Linyi, 272067, P. R. China
| | - Yu Hu
- Zhucheng City People's Hospital, Zhucheng, 262200, P. R. China
| | - Zhichao Dai
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Zunfu Hu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Zibao Gan
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Yunqiang Sun
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- Qilu Normal University, Jinan, 250013, P. R. China
| |
Collapse
|
6
|
Song Y, Liu L, Li S, Jiang X, Zheng X. CoFeSe 2 @DMSA@FA Nanocatalyst for Amplification of Oxidative Stress to Achieve Multimodal Tumor Therapy. Chembiochem 2024; 25:e202300631. [PMID: 37930640 DOI: 10.1002/cbic.202300631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
Nanomedicine has significantly advanced precise tumor therapy, providing essential technical blessing for active drug accumulation, targeted consignment, and mitigation of noxious side effects. To enhance anti-tumor efficacy, the integration of multiple therapeutic modalities has garnered significant attention. Here, we designed an innovative CoFeSe2 @DMSA@FA nanocatalyst with Se vacancies (abbreviated as CFSDF), which exhibits synergistic chemodynamic therapy (CDT) and photothermal therapy (PTT), leading to amplified tumor oxidative stress and enhanced photothermal effects. The multifunctional CFSDF nanocatalyst exhibits the remarkable ability to catalyze the Fenton reaction within the acidic tumor microenvironment, efficiently converting hydrogen peroxide (H2 O2 ) into highly harmful hydroxyl radicals (⋅OH). Moreover, the nanocatalyst effectively diminishes GSH levels and ameliorates intracellular oxidative stress. The incorporation of FA modification enables CFSDF to evade immune detection and selectively target tumor tissues. Numerous in vitro and in vivo investigations have consistently demonstrated that CFSDF optimizes its individual advantages and significantly enhances therapeutic efficiency through synergistic effects of multiple therapeutic modalities, offering a valuable and effective approach to cancer treatment.
Collapse
Affiliation(s)
- Yingzi Song
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
- Key Laboratory of Advanced Biomaterials and, Nanomedicine in Universities of Shandong, Linyi University, Linyi, 276000, China
| | - Lekang Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
- Key Laboratory of Advanced Biomaterials and, Nanomedicine in Universities of Shandong, Linyi University, Linyi, 276000, China
| | - Shulian Li
- Linyi Cancer Hospital, Linyi, 276000, China) E-mail: address
| | - Xiaolei Jiang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
- Key Laboratory of Advanced Biomaterials and, Nanomedicine in Universities of Shandong, Linyi University, Linyi, 276000, China
| | - Xiuwen Zheng
- Key Laboratory of Advanced Biomaterials and, Nanomedicine in Universities of Shandong, Linyi University, Linyi, 276000, China
- Qilu Normal University, Jinan, 250200, China
| |
Collapse
|
7
|
Hao R, Zhang G, Zhang J, Zeng L. Ultrasmall Au/Pt-loaded biocompatible albumin nanospheres to enhance photodynamic/catalytic therapy via triple amplification of glucose-oxidase/catalase/peroxidase. J Colloid Interface Sci 2024; 654:212-223. [PMID: 37839238 DOI: 10.1016/j.jcis.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The weak catalytic activity of nanocatalysts and the insufficient endogenous hydrogen peroxide (H2O2) in tumor microenvironment (TME) seriously restricted the efficacy of catalytic therapy, and the non-degradability of inorganic nanocarriers was also unfavorable for their clinical applications. Herein, by depositing gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) with ultrasmall size and modifying photosensitizer (IR808), a biocompatible bovine serum albumin (BSA) nanoplatform (BSA@Au/Pt-IR808) with triple-amplification of enzyme activity was constructed to enhance photodynamic therapy (PDT) and catalytic therapy. Ultrasmall AuNPs possessed glucose oxidase (GOx)-like activity, by which the self-supplying H2O2 accelerated the dual-enzyme activity of peroxidase (POD) and catalase (CAT) of ultrasmall PtNPs, promoting the generation of hydroxyl radical (·OH) and singlet oxygen (1O2). Compared with BSA-IR808 and BSA@Pt, the yields of 1O2 and ·OH of BSA@Au/Pt-IR808 increased by 38.2% and 18.6%. Under the combination action of photothermal therapy (PTT)/PDT/catalytic therapy of BSA@Au/Pt-IR808, the cell viability significantly reduced to 12.8%, and the tumors were completely eliminated, demonstrating the enhanced PDT and catalytic therapy against breast cancer.
Collapse
Affiliation(s)
- Ran Hao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Gangwan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Jiahe Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
8
|
Hamed EM, Rai V, Li SFY. Single-atom nanozymes with peroxidase-like activity: A review. CHEMOSPHERE 2024; 346:140557. [PMID: 38303399 DOI: 10.1016/j.chemosphere.2023.140557] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
Single-atom nanozymes (SANs) are nanomaterials-based nanozymes with atomically dispersed enzyme-like active sites. SANs offer improved as well as tunable catalytic activity. The creation of extremely effective SANs and their potential uses have piqued researchers' curiosity due to their advantages of cheap cost, variable catalytic activity, high stability, and large-scale production. Furthermore, SANs with uniformly distributed active centers and definite coordination structures offer a distinctive opportunity to investigate the structure-activity correlation and control the geometric and electrical features of metal centers. SANs have been extensively explored in photo-, thermal-, and electro-catalysis. However, SANs suffer from the following disadvantages, such as efficiency, non-mimicking of the 3-D complexity of natural enzymes, limited and narrow range of artificial SANs, and biosafety aspects. Among a quite limited range of artificial SANs, the peroxidase action of SANs has attracted significant research attention in the last five years with the aim of producing reactive oxygen species for use in cancer therapy, and water treatment among many other applications. In this review, we explore the recent progress of different SANs as peroxidase mimics, the role of the metal center in enzymatic activity, possible prospects, and underlying limitations in real-time applications.
Collapse
Affiliation(s)
- Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Varun Rai
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
9
|
Wang Y, Wang Y, Lee LYS, Wong KY. An emerging direction for nanozyme design: from single-atom to dual-atomic-site catalysts. NANOSCALE 2023; 15:18173-18183. [PMID: 37921779 DOI: 10.1039/d3nr04853e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Nanozymes, a new class of functional nanomaterials with enzyme-like characteristics, have recently made great achievements and have become potential substitutes for natural enzymes. In particular, single-atomic nanozymes (Sazymes) have received intense research focus on account of their versatile enzyme-like performances and well-defined spatial configurations of single-atomic sites. More recently, dual-atomic-site catalysts (DACs) containing two neighboring single-atomic sites have been explored as next-generation nanozymes, thanks to the flexibility in tuning active sites by various combinations of two single-atomic sites. This minireview outlines the research progress of DACs in their synthetic approaches and the latest characterization techniques highlighting a series of representative examples of DAC-based nanozymes. In the final remarks, we provide current challenges and perspectives for developing DAC-based nanozymes as a guide for researchers who would be interested in this exciting field.
Collapse
Affiliation(s)
- Ying Wang
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Yong Wang
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
10
|
Tian R, Li Y, Xu Z, Xu J, Liu J. Current Advances of Atomically Dispersed Metal-Centered Nanozymes for Tumor Diagnosis and Therapy. Int J Mol Sci 2023; 24:15712. [PMID: 37958697 PMCID: PMC10648793 DOI: 10.3390/ijms242115712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Nanozymes, which combine enzyme-like catalytic activity and the biological properties of nanomaterials, have been widely used in biomedical fields. Single-atom nanozymes (SANs) with atomically dispersed metal centers exhibit excellent biological catalytic activity due to the maximization of atomic utilization efficiency, unique metal coordination structures, and metal-support interaction, and their structure-activity relationship can also be clearly investigated. Therefore, they have become an emerging alternative to natural enzymes. This review summarizes the examples of nanocatalytic therapy based on SANs in tumor diagnosis and treatment in recent years, providing an overview of material classification, activity modulation, and therapeutic means. Next, we will delve into the therapeutic mechanism of SNAs in the tumor microenvironment and the advantages of synergistic multiple therapeutic modalities (e.g., chemodynamic therapy, sonodynamic therapy, photothermal therapy, chemotherapy, photodynamic therapy, sonothermal therapy, and gas therapy). Finally, this review proposes the main challenges and prospects for the future development of SANs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ruizhen Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (R.T.); (Y.L.)
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| | - Yijia Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (R.T.); (Y.L.)
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| | - Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| | - Jiayun Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| |
Collapse
|
11
|
Han J, Guan J. Heteronuclear dual-metal atom catalysts for nanocatalytic tumor therapy. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
12
|
Meng Y, Zhang D, Song Y, Yang X, Gao Y, Ma J, Hu Z, Zheng X. Precisely designed Fe x ( x = 1-2) cluster nanocatalysts for effective nanocatalytic tumor therapy. NANOSCALE 2023; 15:2305-2315. [PMID: 36636960 DOI: 10.1039/d2nr05869c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomically dispersed metal clusters are considered as promising nanocatalysts due to their excellent physicochemical properties. Here, we report a novel strategy for precisely designing Fex (x = 1-2) cluster nanocatalysts (Fe1-N-C and Fe2-N-C) with dual catalytic activity, which can catalyze H2O2 into reactive oxygen species (ROS) and oxidize glutathione (GSH) into glutathione disulfide simultaneously. The adsorption energies of Fe-N sites in Fe2-N-C for GSH and H2O2 intermediates were well controlled due to the orbital modulation of adjacent Fe sites, contributing to the higher dual catalytic activity compared to Fe1-N-C. Additionally, tamoxifen (TAM) was loaded into Fe2-N-C (Fe2@TDF NEs) to down-regulate the intracellular pH for higher Fenton-like catalytic efficiency and ROS production. The generated ROS could induce apoptosis and lipid peroxidation, triggering ferroptosis. Meanwhile, upregulation of ROS and lipid peroxidation, along with GSH depletion and GPX4 downregulation could promote the apoptosis and ferroptosis of tumor cells. In addition, the lactic acid accumulation effect of TAM and the high photothermal conversion ability of Fe2@TDF NEs could further enhance the catalytic activity to achieve synergistic antitumor effects. As a result, this work highlights the critical role of adjacent metal sites at the atomic-level and provides a rational guidance for the design and application of nanocatalytic antitumor systems.
Collapse
Affiliation(s)
- Yanfei Meng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
| | - Dongsheng Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
| | - Yingzi Song
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
| | - Xinyi Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
| | - Yongli Gao
- Linyi People's Hospital, Linyi 276000, P. R. China
| | - Jun Ma
- Medical College of Linyi University, Linyi 276000, P.R. China
| | - Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
- Medical College of Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
13
|
Rational design and structural engineering of heterogeneous single-atom nanozyme for biosensing. Biosens Bioelectron 2022; 216:114662. [DOI: 10.1016/j.bios.2022.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
|
14
|
Zhang H, Tang W, Gong Q, Yang X, Sun Y, Dai Z, Hu Z, Zheng X. A dual gate-controlled intelligent nanoreactor enables collaborative precise treatment for cancer nanotherapy. NANOSCALE 2022; 14:13113-13122. [PMID: 36052962 DOI: 10.1039/d2nr03676b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, disulfiram (DSF), approved by the FDA as an anti-alcoholic drug, has been proved as an effective antitumor drug after chelating with Cu2+. To overcome the shortage of intracellular Cu2+, we have constructed a dual gate-controlled intelligent nanoreactor (HA-DSF@HCuS@FePtMn, HDHF) via the ingenious combination of hollow copper sulfide (HCuS) nanoparticles, DSF and FePtMn nanocrystals. HDHF has a NIR-actuated gate and enzyme-actuated gate that could be opened in the hyaluronidase-abundant tumor microenvironment with NIR laser irradiation to trigger drug (DSF/FePtMn) release and synergistic therapy. Moreover, the FePtMn nanocrystals could continuously release Fe2+, which could catalyze H2O2 into highly cytotoxic hydroxyl radicals (˙OH), triggering chemodynamic therapy (CDT). When exposed to NIR laser, HCuS could collapse and release Cu2+, which could immediately chelate with DSF, forming the effective anticancer drug (Cu(DTC)2) and enabling DSF-based chemotherapy. More importantly, the efficient photothermal therapy (PTT) effect of HCuS could accelerate the FePtMn-based CDT and the release of Cu2+/DSF, improving tumor treatment efficiency. Thus, this study represents a distinctive paradigm of a dual gate-controlled intelligent nanoreactor enabled PTT-augmented DSF-based chemotherapy and FePtMn-based CDT for cancer nanotherapy.
Collapse
Affiliation(s)
- Huimin Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Weina Tang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Qi Gong
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xinyi Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Yunqiang Sun
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| |
Collapse
|