1
|
Li K, Li Z, Zhou L. Electrically Driven Liquid Crystal Elastomer Self-Oscillators via Rheostat Feedback Mechanism. Polymers (Basel) 2025; 17:617. [PMID: 40076110 PMCID: PMC11902770 DOI: 10.3390/polym17050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
The reliance of feedback mechanisms in conventional light-fueled self-oscillating systems on spatially distributed light and intricately designed structures impedes their application and development in micro-robots, miniature actuators, and other small-scale devices. This paper presents a straightforward rheostat feedback mechanism to create an electrically driven liquid crystal elastomer (LCE) self-oscillator which comprises an LCE fiber, a rheostat, a spring, and a mass. Based on the electrothermally responsive LCE model, we first derive the governing equation for the system's dynamics and subsequently formulate the asymptotic equation. Numerical calculations reveal two motion phases, i.e., static and self-oscillating, and elucidate the mechanism behind self-oscillation. By employing the multi-scale method, we identify the Hopf bifurcation and establish the analytical solutions for amplitude and frequency. The influence of various system parameters on the amplitude and frequency of self-oscillation was analyzed, with numerical solutions being validated against analytical results to ensure consistency. The proposed rheostat feedback mechanism can be extended to cases with rheostats that have more general resistance properties and offers advantages such as simple design, adjustable dimensions, and rapid operation. The findings are expected to inspire broader design concepts for applications in soft robotics, sensors, and adaptive structures.
Collapse
Affiliation(s)
- Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (K.L.); (Z.L.)
| | - Zuhao Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (K.L.); (Z.L.)
| | - Lin Zhou
- School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
2
|
Ge D, Duan J, Bao W, Liang H. Light-Powered Self-Translation of an Asymmetric Friction Slider Using a Liquid Crystal Elastomer String Oscillator. Polymers (Basel) 2024; 16:3520. [PMID: 39771372 PMCID: PMC11678828 DOI: 10.3390/polym16243520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
In recent years, there have been many studies focused on improving the performance of active materials; however, applying these materials to active machines still presents significant challenges. In this study, we introduce a light-powered self-translation system for an asymmetric friction slider using a liquid crystal elastomer (LCE) string oscillator. The self-translation system was composed of a hollow slide, two LCE fibers, and a mass ball. Through the evolution of photothermal-induced contraction, we derived the governing equations for the system. Numerical simulations revealed two distinct motion modes: the static mode and the self-translation mode. As the mass ball moved, the LCE fibers alternated between illuminated and non-illuminated states, allowing them to effectively harvest light energy to compensate for the energy dissipation within the system. Unlike traditional self-oscillating systems that oscillate around a fixed position, the asymmetric friction enabled the slider to advance continuously through the oscillator's symmetric self-sustained oscillation. Furthermore, we explored the critical conditions necessary for initiating self-translation as well as key system parameters that influence the frequency and amplitude of the oscillator and average speed of the slider. This self-translation system, with its simple design and ease of control, holds promising potential for applications in various fields including soft robotics, energy harvesting, and active machinery.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (J.D.); (W.B.)
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Jiangtao Duan
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (J.D.); (W.B.)
| | - Wu Bao
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (J.D.); (W.B.)
| | - Haiyi Liang
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (J.D.); (W.B.)
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Ge D, Hong Q, Liu X, Liang H. Self-Oscillation of Liquid Crystal Elastomer Fiber-Slide System Driven by Self-Flickering Light Source. Polymers (Basel) 2024; 16:3298. [PMID: 39684043 DOI: 10.3390/polym16233298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Self-oscillation, a control approach inspired by biological systems, demonstrates an autonomous, continuous, and regular response to constant external environmental stimuli. Until now, most self-oscillation systems have relied on a static external environment that continuously supplies energy, while materials typically absorb ambient energy only intermittently. In this article, we propose an innovative self-oscillation of liquid crystal elastomer (LCE) fiber-slide system driven by a self-flickering light source, which can efficiently regulate the energy input in sync with the self-oscillating behavior under constant voltage. This system primarily consists of a photo-responsive LCE fiber, a slider that includes a conductive segment and an insulating segment, a light source, and a conductive track. Using the dynamic LCE model, we derive the governing equation for the motion of the LCE fiber-slider system. Numerical simulations show that the LCE fiber-slide system under constant voltage exhibits two distinct motion phases, namely the stationary phase and the self-oscillation phase. The self-oscillation occurs due to the photo-induced contraction of the LCE fiber when the light source is activated. We also investigate the critical conditions required to initiate self-oscillation, and examine key system parameters influencing its frequency and amplitude. Unlike the continuous energy release from the static environmental field in most self-oscillation systems, our LCE fiber-slide self-oscillation system is driven by a self-flickering light source, which dynamically adjusts the energy input under a constant voltage to synchronize with the self-oscillating behavior. Our design features advantages such as spontaneous periodic lighting, a simple structure, energy efficiency, and ease of operation. It shows significant promise for dynamic circuit systems, monitoring devices, and optical applications.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Qingrui Hong
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Xin Liu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Haiyi Liang
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Ge D, Liu X, Hong Q, Liang H. A Self-Oscillator Based on Liquid Crystal Elastomer Fiber Under Constant Voltage. Polymers (Basel) 2024; 16:3192. [PMID: 39599283 PMCID: PMC11598051 DOI: 10.3390/polym16223192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Self-oscillation is the phenomenon in which a system generates spontaneous, consistent periodic motion in response to a steady external stimulus, making it highly suitable for applications in soft robotics, motors, and mechatronic devices. In this paper, we present a self-oscillator based on liquid crystal elastomer (LCE) fiber under constant voltage. The system primarily consists of an LCE-liquid metal (LCE-LM) composite fiber, a metal mass sphere, and a straight rod featuring both conductive and insulating segments. Building upon an established dynamic LCE model, we derive the governing dynamic equations. Numerical calculations reveal two distinct motion regimes: a static regime and a self-oscillation regime. Furthermore, we provide the temporal behavior curves of electrothermal-induced contraction and tensile force, the phase trajectories variation curves of the equivalent driving force and damping force. These detailed studies elucidate that self-oscillation results from the contraction of the electrothermal-responsive LCE-LM fiber when the circuit is activated, with continuous periodic motion being sustained through the interplay between the metal mass sphere and a self-controlled dynamic circuit. We also investigate the threshold conditions necessary for initiating self-oscillation, as well as the key system parameters that influence its frequency and amplitude. Our self-oscillator demonstrates improved stability by reducing the effects of gravity and other disturbances. Additionally, the curved trajectory of the mass sphere can be achieved by replacing the straight rod with a curved one, resulting in a more flexible and easily controllable structure. Given these characteristics, a self-oscillator system based on LCE-LM fiber may be ideal for creating monitoring and warning devices, dynamic circuit systems, and for integrating actuators and controllers.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Xin Liu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Qingrui Hong
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Haiyi Liang
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Deng Z, Zhang H, Priimagi A, Zeng H. Light-Fueled Nonreciprocal Self-Oscillators for Fluidic Transportation and Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209683. [PMID: 36525600 DOI: 10.1002/adma.202209683] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Light-fueled self-oscillators based on soft actuating materials have triggered novel designs for small-scale robotic constructs that self-sustain their motion at non-equilibrium states and possess bioinspired autonomy and adaptive functions. However, the motions of most self-oscillators are reciprocal, which hinders their use in sophisticated biomimetic functions such as fluidic transportation. Here, an optically powered soft material strip that can perform nonreciprocal, cilia-like, self-sustained oscillation under water is reported. The actuator is made of planar-aligned liquid crystal elastomer responding to visible light. Two laser beams from orthogonal directions allow for piecewise control over the strip deformation, enabling two self-shadowing effects coupled in one single material to yield nonreciprocal strokes. The nonreciprocity, stroke pattern and handedness are connected to the fluidic pumping efficiency, which can be controlled by the excitation conditions. Autonomous microfluidic pumping in clockwise and anticlockwise directions, translocation of a micro-object by liquid propulsion, and coupling between two oscillating strips through liquid medium interaction are demonstrated. The results offer new concepts for non-equilibrium soft actuators that can perform bio-like functions under water.
Collapse
Affiliation(s)
- Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI 33101, Finland
| | - Hang Zhang
- Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI 33101, Finland
| | - Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI 33101, Finland
| |
Collapse
|
6
|
Lee S, Lee WS, Enomoto T, Akimoto AM, Yoshida R. Anisotropically self-oscillating gels by spatially patterned interpenetrating polymer network. SOFT MATTER 2024; 20:796-803. [PMID: 38168689 DOI: 10.1039/d3sm01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Here we introduce sub-millimeter self-oscillating gels that undergo the Belousov-Zhabotinsky (BZ) reaction and can anisotropically oscillate like cardiomyocytes. The anisotropically self-oscillating gels in this study were realized by spatially patterning an acrylic acid-based interpenetrating network (AA-IPN). We found that the patterned AA-IPN regions, locally introduced at both ends of the gels through UV photolithography, can constrain the horizontal gel shape deformation during the BZ reaction. In other words, the two AA-IPN regions could act as a physical barrier to prevent isotropic deformation. Furthermore, we controlled the anisotropic deformation behavior during the BZ reaction by varying the concentration of acrylic acid used in the patterning process of the AA-IPN. As a result, a specific directional deformation behavior (66% horizontal/vertical amplitude ratio) was fulfilled, similar to that of cardiomyocytes. Our study can provide a promising insight to fabricating robust gel systems for cardiomyocyte modeling or designing novel autonomous microscale soft actuators.
Collapse
Affiliation(s)
- Suwen Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
7
|
Sun X, Dai Y, Li K, Xu P. Self-Sustained Chaotic Jumping of Liquid Crystal Elastomer Balloon under Steady Illumination. Polymers (Basel) 2023; 15:4651. [PMID: 38139903 PMCID: PMC10747744 DOI: 10.3390/polym15244651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Self-sustained chaotic jumping systems composed of active materials are characterized by their ability to maintain motion through drawing energy from the steady external environment, holding significant promise in actuators, medical devices, biomimetic robots, and other fields. In this paper, an innovative light-powered self-sustained chaotic jumping system is proposed, which comprises a liquid crystal elastomer (LCE) balloon and an elastic substrate. The corresponding theoretical model is developed by combining the dynamic constitutive model of an LCE with Hertz contact theory. Under steady illumination, the stationary LCE balloon experiences contraction and expansion, and through the work of contact expansion between LCE balloon and elastic substrate, it ultimately jumps up from the elastic substrate, achieving self-sustained jumping. Numerical calculations reveal that the LCE balloon exhibits periodic jumping and chaotic jumping under steady illumination. Moreover, we reveal the mechanism underlying self-sustained periodic jumping of the balloon in which the damping dissipation is compensated through balloon contact with the elastic substrate, as well as the mechanism involved behind self-sustained chaotic jumping. Furthermore, we provide insights into the effects of system parameters on the self-sustained jumping behaviors. The emphasis in this study is on the self-sustained chaotic jumping system, and the variation of the balloon jumping modes with parameters is illustrated through bifurcation diagrams. This work deepens the understanding of chaotic motion, contributes to the research of motion behavior control of smart materials, and provides ideas for the bionic design of chaotic vibrators and chaotic jumping robots.
Collapse
Affiliation(s)
| | | | | | - Peibao Xu
- Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (X.S.); (Y.D.); (K.L.)
| |
Collapse
|
8
|
Ge D, Dai Y, Li K. Self-Oscillating Liquid Crystal Elastomer Helical Spring Oscillator with Combined Tension and Torsion. Polymers (Basel) 2023; 15:3294. [PMID: 37571189 PMCID: PMC10422366 DOI: 10.3390/polym15153294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Self-oscillation is the autonomous maintenance of continuous periodic motion through energy absorption from non-periodic external stimuli, making it particularly attractive for fabricating soft robots, energy-absorbing devices, mass transport devices, and so on. Inspired by the self-oscillating system that presents high degrees of freedom and diverse complex oscillatory motions, we created a self-oscillating helical spring oscillator with combined tension and torsion under steady illumination, among which a mass block and a liquid crystal elastomer (LCE) helical spring made with LCE wire are included. Considering the well-established helical spring model and the dynamic LCE model, a nonlinear dynamic model of the LCE helical spring oscillator under steady illumination is proposed. From numerical calculation, the helical spring oscillator upon exposure to steady illumination possesses two motion regimes, which are the static regime and the self-tension-torsion regime. Contraction of the LCE wire under illumination is necessary to generate the self-tension-torsion of the helical spring oscillator, with its continuous periodic motion being maintained by the mutual balance between light energy input and damping dissipation. Additionally, the critical conditions for triggering the self-tension-torsion, as well as the vital system parameters affecting its frequencies and amplitudes of the translation and the rotation, were investigated in detail. This self-tension-torsion helical spring oscillator is unique in its customizable mechanical properties via its structural design, small material strain but large structural displacement, and ease of manufacture. We envision a future of novel designs for soft robotics, energy harvesters, active machinery, and so on.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (Y.D.)
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230001, China
| | - Yuntong Dai
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (Y.D.)
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (Y.D.)
| |
Collapse
|
9
|
Zhao Y, Hong Y, Qi F, Chi Y, Su H, Yin J. Self-Sustained Snapping Drives Autonomous Dancing and Motion in Free-Standing Wavy Rings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207372. [PMID: 36366927 DOI: 10.1002/adma.202207372] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Harnessing snapping, an instability phenomenon observed in nature (e.g., Venus flytraps), for autonomy has attracted growing interest in autonomous soft robots. However, achieving self-sustained snapping and snapping-driven autonomous motions in soft robots remains largely unexplored. Here, harnessing bistable, ribbon ring-like structures for realizing self-sustained snapping in a library of soft liquid-crystal elastomer wavy rings under constant thermal and photothermal actuation are reported. The self-sustained snapping induces continuous ring flipping that drives autonomous dancing or crawling motions on the ground and underwater. The 3D, free-standing wavy rings employ either a highly symmetric or symmetry-broken twisted shape with tunable geometric asymmetries. It is found that the former favors periodic self-dancing motion in place due to isotropic friction, while the latter shows a directional crawling motion along the predefined axis of symmetry during fabrication due to asymmetric friction. It shows that the crawling speed can be tuned by the geometric asymmetries with a peak speed achieved at the highest geometric asymmetry. Lastly, it is shown that the autonomous crawling ring can also adapt its body shape to pass through a confined space that is over 30% narrower than its body size.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fangjie Qi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yinding Chi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
10
|
Ge D, Dai Y, Li K. Self-Sustained Euler Buckling of an Optically Responsive Rod with Different Boundary Constraints. Polymers (Basel) 2023; 15:polym15020316. [PMID: 36679197 PMCID: PMC9862129 DOI: 10.3390/polym15020316] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Self-sustained oscillations can directly absorb energy from the constant environment to maintain its periodic motion by self-regulating. As a classical mechanical instability phenomenon, the Euler compression rod can rapidly release elastic strain energy and undergo large displacement during buckling. In addition, its boundary configuration is usually easy to be modulated. In this paper, we develop a self-sustained Euler buckling system based on optically responsive liquid crystal elastomer (LCE) rod with different boundary constraints. The buckling of LCE rod results from the light-induced expansion and compressive force, and the self-buckling is maintained by the energy competition between the damping dissipation and the net work done by the effective elastic force. Based on the dynamic LCE model, the governing equations for dynamic Euler buckling of the LCE rod is formulated, and the approximate admissible trigonometric functions and Runge-Kutta method are used to solve the dynamic Euler buckling. Under different illumination parameters, there exists two motion modes of the Euler rod: the static mode and the self-buckling mode, including alternating and unilateral self-buckling modes. The triggering conditions, frequency, and amplitude of the self-sustained Euler buckling can be modulated by several system parameters and boundary constraints. Results indicate that strengthening the boundary constraint can increase the frequency and reduce the amplitude. It is anticipated that this system may open new avenues for energy harvesters, signal sensors, mechano-logistic devices, and autonomous robots.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230001, China
| | - Yuntong Dai
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- Correspondence:
| |
Collapse
|
11
|
Oscillating light engine realized by photothermal solvent evaporation. Nat Commun 2022; 13:5621. [PMID: 36153322 PMCID: PMC9509359 DOI: 10.1038/s41467-022-33374-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Continuous mechanical work output can be generated by using combustion engines and electric motors, as well as actuators, through on/off control via external stimuli. Solar energy has been used to generate electricity and heat in human daily life; however, the direct conversion of solar energy to continuous mechanical work has not been realized. In this work, a solar engine is developed using an oscillating actuator, which is realized through an alternating volume decrease of each side of a polypropylene/carbon black polymer film induced by photothermal-derived solvent evaporation. The anisotropic solvent evaporation and fast gradient diffusion in the polymer film sustains oscillating bending actuation under the illumination of divergent light. This light-driven oscillator shows excellent oscillation performance, excellent loading capability, and high energy conversion efficiency, and it can never stop with solvent supply. The oscillator can cyclically lift up a load and output work, exhibiting a maximum specific work of 30.9 × 10−5 J g−1 and a maximum specific power of 15.4 × 10−5 W g−1 under infrared light. This work can inspire the development of autonomous devices and provide a design strategy for solar engines. Developing an oscillating actuator that can directly convert solar energy into mechanical energy is highly desirable. Here, authors report a solvent-assisted light-driven oscillator by porous film that achieves excellent oscillating actuation performance and can even oscillate by carrying a load under light irradiation.
Collapse
|
12
|
Self-Jumping of a Liquid Crystal Elastomer Balloon under Steady Illumination. Polymers (Basel) 2022; 14:polym14142770. [PMID: 35890544 PMCID: PMC9319439 DOI: 10.3390/polym14142770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Self-oscillation capable of maintaining periodic motion upon constant stimulus has potential applications in the fields of autonomous robotics, energy-generation devices, mechano-logistic devices, sensors, and so on. Inspired by the active jumping of kangaroos and frogs in nature, we proposed a self-jumping liquid crystal elastomer (LCE) balloon under steady illumination. Based on the balloon contact model and dynamic LCE model, a nonlinear dynamic model of a self-jumping LCE balloon under steady illumination was formulated and numerically calculated by the Runge–Kutta method. The results indicated that there exist two typical motion regimes for LCE balloon under steady illumination: the static regime and the self-jumping regime. The self-jumping of LCE balloon originates from its expansion during contact with a rigid surface, and the self-jumping can be maintained by absorbing light energy to compensate for the damping dissipation. In addition, the critical conditions for triggering self-jumping and the effects of several key system parameters on its frequency and amplitude were investigated in detail. The self-jumping LCE hollow balloon with larger internal space has greater potential to carry goods or equipment, and may open a new insight into the development of mobile robotics, soft robotics, sensors, controlled drug delivery, and other miniature device applications.
Collapse
|