1
|
Park S, Sharma H, Safdar M, Lee J, Kim W, Park S, Jeong HE, Kim J. Micro/nanoengineered agricultural by-products for biomedical and environmental applications. ENVIRONMENTAL RESEARCH 2024; 250:118490. [PMID: 38365052 DOI: 10.1016/j.envres.2024.118490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongryun Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Wang C, Wang F, Zhang H, Zhang Y, Zhang C, Zang W, Peng M, Yang Y, Wang S, Xu C, Wu A, Zhang Y. Multifunctional polyaniline modified calcium alginate aerogel membrane with antibacterial, oil-water separation, dye and heavy metal ions removal properties for complex water purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172058. [PMID: 38552978 DOI: 10.1016/j.scitotenv.2024.172058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
With the rapid development of urbanization, the discharge of industrial wastewater has led to increasingly critical water pollution issues. Additionally, heavy metals, organic dyes, microorganisms and oil pollution often coexist and have persistence and harmfulness. Developing materials that can treat these complex pollutants simultaneously has important practical significance. In this study, a calcium alginate-based aerogel membrane (PANI@CA membrane) was prepared by spraying, polymerization, Ca2+ cross-linking and freeze-drying using aniline and sodium alginate as raw materials. Oil-water emulsion can be separated by PANI@CA membrane only under gravity, and the separation efficiency was as high as 99 %. At the same time, the membrane can effectively intercept or adsorb organic dyes and heavy metal ions. The removal rates of methylene blue and Congo red were above 92 % and 63 % respectively even after ten times of cyclic filtration. The removal rate of Pb2+ was up to 95 %. In addition, PANI@CA membrane shows excellent photothermal conversion ability, and it can effectively kill Staphylococcus aureus under 808 nm laser irradiation. PANI@CA membrane has the advantages of low cost, simple preparation, good stability and high recycling ability, and has potential application prospects in wastewater treatment.
Collapse
Affiliation(s)
- Chaozhen Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfang Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hao Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuenan Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenguang Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Wen Zang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Minjie Peng
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Yiyu Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Shiwei Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yujie Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Chinglenthoiba C, Mahadevan G, Zuo J, Prathyumnan T, Valiyaveettil S. Conversion of PET Bottle Waste into a Terephthalic Acid-Based Metal-Organic Framework for Removing Plastic Nanoparticles from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:257. [PMID: 38334528 PMCID: PMC10856359 DOI: 10.3390/nano14030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Micro- and nanoparticles of plastic waste are considered emerging pollutants with significant environmental and health impacts at high concentrations or prolonged exposure time. Here we report the synthesis and characterization of a known metal-organic framework (MOF) using terephthalic acid (TPA) recovered from the hydrolysis of polyethylene terephthalate (PET) bottle waste. This approach adds value to the existing large amounts of bottle waste in the environment. Fully characterized zinc-TPA MOF (MOF-5) was used for the extraction and removal of engineered polyvinyl chloride (PVC) and polymethylmethacrylate (PMMA) nanoparticles from water with a high efficiency of 97% and 95%, respectively. Kinetic and isotherm models for the adsorption of polymer nanoparticles (PNPs) on the MOF surface were investigated to understand the mechanism. The Qmax for PVC and PMMA NPs were recorded as 56.65 mg/g and 33.32 mg/g, respectively. MOF-5 was characterized before and after adsorption of PNPs on the surface of MOF-5 using a range of techniques. After adsorption, the MOF-5 was successfully regenerated and reused for the adsorption and removal of PNPs, showing consistent results for five adsorption cycles with a removal rate of 83-85%. MOF-5 was characterized before and after adsorption of PNPs on the surface using a range of techniques. The MOF-5 with PNPs on the surface was successfully regenerated and reused for the adsorption and removal of polymer nanoparticles, showing consistent results for five extraction cycles. As a proof of concept, MOF-5 was also used to remove plastic particles from commercially available body scrub gel solutions. Such methods and materials are needed to mitigate the health hazards caused by emerging micro- and nanoplastic pollutants in the environment.
Collapse
Affiliation(s)
| | | | | | | | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|