1
|
Wei Y, Zhu J, Gao Y, Cai H, Wu C, Yang Y, Zhu G, Khabibulla P, Kayumov J. Novel core-shell materials SiO 2@Tb-MOF for the incorporation of spiropyran molecules and its application in dynamic advanced information encryption. J Colloid Interface Sci 2024; 680:224-234. [PMID: 39561648 DOI: 10.1016/j.jcis.2024.11.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Dynamic fluorescent switches with multiple light outputs offer promising opportunities for advanced security encryption. However, the achievement of dynamic emission, particularly when based on the timing of external stimuli, continues to present a significant challenge. Herein, a unique dynamic fluorescent switch was developed by integrating spiropyran molecules (SP) into a core-shell structure (SiO2@Tb-MOF). The core-shell structure, derived from lanthanide complexes and silica microspheres, was synthesized under solvothermal conditions. This structure not only preserves the green fluorescence emission of Tb-MOF, but also results in a substantial specific surface area and mesoporous pore size from SiO2, which is advantageous for incorporating SP molecules to create a dynamic fluorescent switch, SP ⊂ SiO2@Tb-MOF. Upon exposure to ultraviolet light, SP gradually transitions into the merocyanine form (MC), displaying a pronounced absorption band at approximately 550 nm. Concurrently, a fluorescence resonance energy transfer (FRET) process is initiated between Tb3+ and the merocyanine isomers. With prolonged exposure to UV light, the fluorescence color shifts progressively from green to red, facilitated by the ongoing FRET process. Moreover, SP ⊂ SiO2@Tb-MOF is doped with polydimethylsiloxane to fabricate a film. Utilizing time-dependent fluorescence, dynamic encryption patterns and advanced information encryption were investigated. This work provides a design basis for how to better construct core-shell structures and combine them with SP molecules to prepare dynamic fluorescent materials, and paves a way for constructing advanced encryption materials with higher safety requirements.
Collapse
Affiliation(s)
- Youhao Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiangkun Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyang Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - HaiTao Cai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Conghao Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuhui Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Guocheng Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Parpiev Khabibulla
- Department of Technology of Textile industry products, Namangan Institute of Engineering and Technology, Namangan 160115, Uzbekistan
| | - Juramirza Kayumov
- Department of Technology of Textile industry products, Namangan Institute of Engineering and Technology, Namangan 160115, Uzbekistan
| |
Collapse
|
2
|
Ding S, Lv X, Xia Y, Liu Y. Fluorescent Materials Based on Spiropyran for Advanced Anti-Counterfeiting and Information Encryption. Molecules 2024; 29:2536. [PMID: 38893412 PMCID: PMC11173752 DOI: 10.3390/molecules29112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In daily life, counterfeit and substandard products, particularly currency, medicine, food, and confidential documents, are capable of bringing about very serious consequences. The development of anti-counterfeiting and authentication technologies with multilevel securities is a powerful means to overcome this challenge. Among various anti-counterfeiting technologies, fluorescent anti-counterfeiting technology is well-known and commonly used to fight counterfeiters due to its wide material source, low cost, simple usage, good concealment, and simple response mechanism. Spiropyran is favored by scientists in the fields of anti-counterfeiting and information encryption due to its reversible photochromic property. Here, we summarize the current available spiropyran-based fluorescent materials from design to anti-counterfeiting applications. This review will be help scientists to design and develop fluorescent anti-counterfeiting materials with high security, high performance, quick response, and high anti-counterfeiting level.
Collapse
Affiliation(s)
| | | | - Yong Xia
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (X.L.)
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (X.L.)
| |
Collapse
|
3
|
Li B, Zhu W, Liu J, Sun S, Zhang Y, Zhang D, Li C, Shi J, Shi Z. Grafting photochromic spiropyran polymer brushes on graphene oxide surfaces via surface-initiated ring-opening metathesis polymerization. RSC Adv 2024; 14:3748-3756. [PMID: 38274163 PMCID: PMC10808994 DOI: 10.1039/d3ra08076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
A practical "grafting-from" strategy is described to grow photochromic polymer brushes bearing spiropyran (SP) functional groups on graphene oxide (GO) surfaces via surface-initiated ring-opening metathesis polymerization (SI-ROMP). The Grubbs II catalyst was fixed on the GO surface, and the norbornene derivatives functionalized using spiropyran were synthesized from this active site via the ROMP method. The results indicated that the spiropyran-modified polymer brushes were obtained on the GO surface in the form of thin films. The solubility of GO modified by spiropyran polymers (GO-SPs) in organic solvents was significantly improved. The GO-SPs exhibited excellent photochromic properties, including fast coloration/decoloration. The modified GO with an isomeric structure was colored in 90 s under ultraviolet irradiation and decolored in 360 s under white light. The fading kinetic rate in the dark was slow and the kinetic attenuation curve followed bi-exponential decay. The GO-SP composite materials took more than 2 h to return to thermodynamically stable forms. The reversible change in the water contact angle reached 8° after continuous cycling with ultraviolet and visible light. GO-SP maintained its photochromic performance and possessed excellent fatigue resistance after more than six successive UV/light cycles. This work describes a practical strategy for the preparation of photochromic polymer brush modified GO composite materials and extends the applications of GO in photochromic materials.
Collapse
Affiliation(s)
- BangSen Li
- Collage of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Control of Haikou City Haikou 571158 China
| | - Wenya Zhu
- Collage of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Control of Haikou City Haikou 571158 China
| | - Jinrui Liu
- Collage of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Control of Haikou City Haikou 571158 China
| | - Shishu Sun
- Collage of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Control of Haikou City Haikou 571158 China
| | - Yan Zhang
- Collage of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Control of Haikou City Haikou 571158 China
| | - DaShuai Zhang
- Collage of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Control of Haikou City Haikou 571158 China
| | - Chen Li
- Collage of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Control of Haikou City Haikou 571158 China
| | - Jianjun Shi
- Collage of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Control of Haikou City Haikou 571158 China
| | - Zaifeng Shi
- Collage of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province Haikou 571158 China
- Key Laboratory of Water Pollution Treatment and Control of Haikou City Haikou 571158 China
| |
Collapse
|
4
|
Sardari N, Abdollahi A, Farokhi Yaychi M. Chameleon-like Photoluminescent Janus Nanoparticles as Full-Color Multicomponent Organic Nanoinks: Combination of Förster Resonance Energy Transfer and Photochromism for Encryption and Anticounterfeiting with Multilevel Authentication. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38035478 DOI: 10.1021/acsami.3c14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increasing the security by the multilevel authentication mechanism was the most significant challenge in recent years for the development of anticounterfeiting inks based on photoluminescent nanomaterials. For this purpose, the greatest strategy is the use of multicomponent organic materials and a combination of Förster resonance energy transfer (FRET) with the intelligent behavior of photochromic compounds like spiropyran. Here, the hydroxyl-functionalized polymer nanoparticles were synthesized by emulsion copolymerization of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different compositions (0-30 wt % of HEMA). Results illustrated that the size of the nanoparticles changed from 64 to 204 nm, and a morphology evolution from spherical to Janus shape was observed by increasing the concentration of HEMA. Photoluminescent inks with red, green, and blue (RGB) fluorescence emissions were prepared by modification of nanoparticles containing 15 wt % of HEMA with spiropyran, fluorescein, and coumarin, respectively. To develop dual-color and multicolor photoluminescent inks that display static and dynamic emission, RGB latex samples were mixed together in different ratios and printed on cellulosic paper. Results display that the fluorescence emission of developed inks can be photoswitched between different statuses, including white to blue, green to blue, green to red/orange, purple to pink, and white to pink, utilizing the FRET phenomenon, photochromism, and a combination of both phenomena. Samples containing spiropyran displayed dynamic color changes in the emission to red, orange, and pink depending on the composition. Hence, developed dual-color and multicolor photoluminescent inks were used for printing of security tags and also painting of some hand-drawn artworks, which obtained results indicating high printability, maximum fluorescence intensity, high resolution, and fast responsivity upon UV-light irradiations of 254 nm (for static mode) and 365 nm (for dynamic mode). In addition, the multilevel authentication mechanism by a static emission under UV-light irradiation of 254 nm, a dynamic emission under UV-light irradiation of 365 nm, and photochromic color change was observed, resulting in increasing the security of developed inks. Actually, developed multicolor photoluminescent inks are the most efficient candidates for developing a new category of chameleon-like high-security anticounterfeiting inks that have tunable optical properties and complex multilevel authentication mechanisms.
Collapse
Affiliation(s)
- Negar Sardari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Amin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mojtaba Farokhi Yaychi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
5
|
Marco A, Guirado G, Sebastián RM, Hernando J. Spiropyran-based chromic hydrogels for CO 2 absorption and detection. Front Chem 2023; 11:1176661. [PMID: 37288075 PMCID: PMC10242082 DOI: 10.3389/fchem.2023.1176661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
By enabling rapid, cost-effective, user-friendly and in situ detection of carbon dioxide, colorimetric CO2 sensors are of relevance for a variety of fields. However, it still remains a challenge the development of optical chemosensors for CO2 that combine high sensitivity, selectivity and reusability with facile integration into solid materials. Herein we pursued this goal by preparing hydrogels functionalized with spiropyrans, a well-known class of molecular switches that undergo different color changes upon application of light and acid stimuli. By varying the nature of the substituents of the spiropyran core, different acidochromic responses are obtained in aqueous media that allow discriminating CO2 from other acid gases (e.g., HCl). Interestingly, this behavior can be transferred to functional solid materials by synthesizing polymerizable spiropyran derivatives, which are used to prepare hydrogels. These materials preserve the acidochromic properties of the incorporated spiropyrans, thus leading to selective, reversible and quantifiable color changes upon exposure to different CO2 amounts. In addition, CO2 desorption and, therefore, recovery of the initial state of the chemosensor is favored by irradiation with visible light. This makes spiropyran-based chromic hydrogels promising systems for the colorimetric monitorization of carbon dioxide in a diversity of applications.
Collapse
Affiliation(s)
| | | | | | - Jordi Hernando
- *Correspondence: Rosa María Sebastián, ; Jordi Hernando,
| |
Collapse
|
6
|
Ye X, Wang A, Zhang D, Zhou P, Zhu P. Light and pH dual-responsive spiropyran-based cellulose nanocrystals. RSC Adv 2023; 13:11495-11502. [PMID: 37063713 PMCID: PMC10093094 DOI: 10.1039/d3ra01637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023] Open
Abstract
Reversibly light and pH dual-responsive spiropyran-based cellulose nanocrystals (SP-CNCs) is synthesized by the attachment of carboxyl-containing spiropyran (SP-COOH) onto cellulose nanocrystals (CNCs). The resulting structure and properties of SP-CNCs are examined by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic laser light scattering (DSL), ζ-potential measurements and ultraviolet-visible (UV-Vis) light absorption spectroscopy. SP-CNCs exhibit excellent photochromic and photoswitching properties. Spiropyran moieties on SP-CNCs can be switched between open-ring merocyanine (MC) and closed ring spiropyran (SP) forms under UV/Vis irradiation, leading to color changes. Moreover, SP-CNCs display improved photoresponsiveness, photoreversibility, fatigue resistance, and stability in DMSO than in H2O. We further investigate the pH-responsive behavior of SP-CNCs in H2O. SP-CNCs aqueous solution display different colors at different pH values, which can be directly observed by naked eye, indicating that SP-CNCs can function as a visual pH sensor. These results suggest that light and pH dual-responsive SP-CNCs possess great potential for applications in reversible data storage, sensing, optical switching and light-controlled nanomaterials.
Collapse
Affiliation(s)
- Xiu Ye
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China +86-755-26731946
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic Shenzhen 518055 China
| | - Anzhe Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology Nanjing 211167 China
| | - Dongyang Zhang
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic Shenzhen 518055 China
| | - Peng Zhou
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic Shenzhen 518055 China
| | - Pengli Zhu
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China +86-755-26731946
| |
Collapse
|