1
|
Das SS, García-Sánchez P, Ramos A, Yossifon G. Understanding the origin of a second mobility reversal in optoelectrically powered metallo-dielectric Janus particles. J Colloid Interface Sci 2025; 686:118-125. [PMID: 39892004 DOI: 10.1016/j.jcis.2025.01.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
While previous studies indicated the mobility reversal of an electrically-powered metallo-dielectric Janus particle (JP) with increasing frequency, here we report an intriguing second mobility reversal observed in optoelectronically-driven JPs. In contrast to the commonly used setup with parallel ITO-coated glass substrates to induce a uniform electric field orthogonal to the velocity direction, this setup incorporates a thin photoconductive layer deposited on the bottom ITO-coated glass substrate. We have found that the reversal is associated with the asymmetry of the bottom substrate's photoconductivity, localized underneath the JP, resulting from the self-shading effect of the metallic hemisphere under top optical illumination. Numerous control tests, including optical illumination from the bottom, along with numerical simulations, support this hypothesized mechanism.
Collapse
Affiliation(s)
- Sankha Shuvra Das
- School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv 69978 Israel
| | - Pablo García-Sánchez
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes s/n, Sevilla 41012 Spain
| | - Antonio Ramos
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes s/n, Sevilla 41012 Spain
| | - Gilad Yossifon
- School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv 69978 Israel; Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978 Israel.
| |
Collapse
|
2
|
Zhuang R, Chang X, Sha J, Yu Z, Shi E, Lu M, Liu J, Zhang G, Zhou D, Li L. Optoelectronic-Coupled-Driven Microrobot for Biological Cargo Transport in Conductive Isosmotic Glucose Solution. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28425-28435. [PMID: 40299716 DOI: 10.1021/acsami.5c06042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Electric field-driven micro/nanorobots, as micro/nanodevices with autonomous motion capability, have emerged as promising candidates for targeted cargo delivery in biomedical applications due to their advantages of label-free operation, selectivity, and controllability. In biological systems, many biological cargos need to be operated in conductive isosmotic solutions to ensure their viability. However, in the conductive solution, electric field-driven micro/nanorobots exhibit significantly reduced propulsion performance, despite retaining the capability to manipulate cargos by the dielectrophoretic force. This limitation restricts the wider applicability of electric field-driven micro/nanorobots in biomedical fields. This paper presents a novel optoelectronic-coupled-driven α-Fe2O3@aTiO2/Au microrobot, which exhibits significantly improved mobility and enables biological cargo transportation in the conductive isosmotic glucose solution. Benefiting from the flowerlike surface structure and composite photocatalytic material, the proposed microrobot exhibits enhanced photocatalytic capability, enabling efficient propulsion in glucose solution under light irradiation. In addition, the motion behavior of the microrobot under light, electric, and optoelectronic-coupled fields is investigated. It is found that the speed of the microrobot could exceed 300 μm/s under coupled fields, which is more than ten times faster than that of previously reported electric field-driven micro/nanorobots. Due to the magnetic property, the proposed microrobot can be precisely navigated under the guidance of an external uniform magnetic field. Furthermore, the proposed microrobot can achieve the transportation of various biological cargos in a conductive isosmotic glucose solution. The proposed microrobot opens a new avenue for targeted delivery and holds great potential for applications in the biological and pharmaceutical fields.
Collapse
Affiliation(s)
- Rencheng Zhuang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Xiaocong Chang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Jinrui Sha
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Zehao Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Enbo Shi
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Junmin Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Guangyu Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Dekai Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400722, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
3
|
Wang C, Yang Y, Wang N, Luan A, Wang H, Hu C. Design and application of antimicrobial nanomaterials in the treatment of periodontitis. Nanomedicine (Lond) 2025; 20:707-723. [PMID: 40042364 PMCID: PMC11970792 DOI: 10.1080/17435889.2025.2469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Periodontitis is a chronic inflammatory disease induced by the microbiome, leading to the destruction of periodontal structures and potentially resulting in tooth loss. Using local drug delivery systems as an adjunctive therapy to scaling and root planning in periodontitis is a promising strategy. However, this administration method's effectiveness is constrained by the complexity of the periodontal environment. Nanomaterials have demonstrated significant potential in the antibacterial treatment of periodontitis, attributed to their controllable size, shape, and surface charge, high design flexibility, high reactivity, and high specific surface area. In this review, we summarize the complex periodontal microenvironment and the difficulties of local drug delivery in periodontitis, explicitly reviewing the application and design strategies of nanomaterials with unique properties in the distinct microenvironment of periodontitis. Furthermore, the review discusses the limitations of current research, proposes feasible solutions, and explores prospects for using nanomaterials in this context.
Collapse
Affiliation(s)
- Chunlin Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yujun Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ning Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Aohan Luan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Huilin Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chen Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Jancik-Prochazkova A, Ariga K. Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale. RESEARCH (WASHINGTON, D.C.) 2025; 8:0624. [PMID: 39995898 PMCID: PMC11848434 DOI: 10.34133/research.0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Nano-/microrobots have been demonstrated as an efficient solution for environmental remediation. Their strength lies in their propulsion abilities that allow active "on-the-fly" operation, such as pollutant detection, capture, transport, degradation, and disruption. Another advantage is their versatility, which allows the engineering of highly functional solutions for a specific application. However, the latter advantage can bring complexity to applications; versatility in dimensionality, morphology, materials, surface decorations, and other modifications has a crucial effect on the resulting propulsion abilities, compatibility with the environment, and overall functionality. Synergy between morphology, materials, and surface decorations and its projection to the overall functionality is the object of nanoarchitectonics. Here, we scrutinize the engineering of nano-/microrobots with the eyes of nanoarchitectonics: we list general concepts that help to assess the synergy and limitations of individual procedures in the fabrication processes and their projection to the operation at the macroscale. The nanoarchitectonics of nano-/microrobots is approached from microscopic level, focusing on the dimensionality and morphology, through the nanoscopic level, evaluating the influence of the decoration with nanoparticles and quantum dots, and moving to the decorations on molecular and single-atomic level to allow very fine tuning of the resulting functionality. The presented review aims to lay general concepts and provide an overview of the engineering of functional advanced nano-/microrobot for environmental remediation procedures and beyond.
Collapse
Affiliation(s)
- Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
5
|
You M, Zhang S, Chen B, Mou F, Guan J. Magnetic-chemotactic hybrid microrobots with precise remote targeting capability. J Mater Chem B 2024; 12:10550-10558. [PMID: 39385667 DOI: 10.1039/d4tb01807a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Micro/nanorobots (MNRs) hold great promise for various applications due to their capability to execute complex tasks in hard-to-reach micro/nano cavities. However, the developed magnetic MNRs, as marionettes of external magnetic fields, lack built-in intelligence for self-targeting, while chemotactic MNRs suffer from limited self-targeting range. Here, we demonstrate magnetic-chemotactic ZnO/Fe-Ag Janus microrobots (JMRs) capable of rapid, remote self-targeting for bacterial elimination. The JMRs utilize the magnetic Fe engine for coarse navigation from a distance, allowing for external control to swiftly guide them to the vicinity of a hidden/uncharted target that establishes a local chemical gradient ([CO2] or [H+] gradient). Once in proximity, the inherent chemotaxis of the JMRs takes over, the chemotactic engine enables them to autonomously accumulate at the target site along the chemical gradient in high precision. Upon reaching the target, the ZnO/Fe-Ag JMRs can release Zn2+ and Ag+ to eliminate bacteria residing there. The proposed strategy of integrating on-board chemotaxis with external magnetic field-driven propulsion paves the way for efficient precise therapies using MNRs, especially in targeted drug/energy delivery involving remote hidden or uncharted targets.
Collapse
Affiliation(s)
- Ming You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shuming Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Binjie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, P. R. China
| |
Collapse
|
6
|
Pu R, Yang X, Mu H, Xu Z, He J. Current status and future application of electrically controlled micro/nanorobots in biomedicine. Front Bioeng Biotechnol 2024; 12:1353660. [PMID: 38314349 PMCID: PMC10834684 DOI: 10.3389/fbioe.2024.1353660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Using micro/nanorobots (MNRs) for targeted therapy within the human body is an emerging research direction in biomedical science. These nanoscale to microscale miniature robots possess specificity and precision that are lacking in most traditional treatment modalities. Currently, research on electrically controlled micro/nanorobots is still in its early stages, with researchers primarily focusing on the fabrication and manipulation of these robots to meet complex clinical demands. This review aims to compare the fabrication, powering, and locomotion of various electrically controlled micro/nanorobots, and explore their advantages, disadvantages, and potential applications.
Collapse
Affiliation(s)
- Ruochen Pu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiyu Yang
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Mu
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghua Xu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin He
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Wang Y, Qin B, Gao S, Wang X, Zhang H, Wu Z. Recent advancements in Mg-based micromotors for biomedical and environmental applications. J Mater Chem B 2023; 11:11483-11495. [PMID: 38054245 DOI: 10.1039/d3tb02339g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Synthetic micro/nanomotors have attracted considerable attention due to their promising potential in the field of biomedicine. Despite their great potential, major micromotors require chemical fuels or complex devices to generate external physical fields for propulsion. Therefore, for future practical medical and environmental applications, Mg-based micromotors that exhibit water-powered movement and thus eliminate the need for toxic fuels, and that display optimal biocompatibility and biodegradability, are attracting attention. In this review, we summarized the recent microarchitectural design of Mg-based micromotors for biomedical applications. We also highlight the mechanism for realizing their water-powered motility. Furthermore, recent biomedical and environmental applications of Mg-based micromotors are introduced. We envision that advanced Mg-based micromotors will have a profound impact in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Boyu Qin
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Sihan Gao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Xuanchun Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Hongyue Zhang
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhiguang Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
8
|
Ren J, Chen Z, Ma E, Wang W, Zheng S, Wang H. Dual-source powered nanomotors coupled with dual-targeting ligands for efficient capture and detection of CTCs in whole blood and in vivo tumor imaging. Colloids Surf B Biointerfaces 2023; 231:113568. [PMID: 37826963 DOI: 10.1016/j.colsurfb.2023.113568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/02/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Circulating tumor cells (CTCs) are important biomarkers in cancer diagnosis. However, the specific labeling of CTCs with high capture efficiency in whole blood remains a problem. Herein, a dual-source-driven nanomotor coupled with dual-targeting ligands (CD@NM) was designed for efficient capture, specific imaging and quantitative detection of CTCs. In both water and biological fluid, CD@NMs moved autonomously under the propulsion of a magnetic field and H2O2 solution, which improved the capture efficiency of CTCs to 97.50 ± 2.38%. More importantly, specific labeling of CTCs was achieved by fluorescence quenching and recovery of fluorescent carbon dots modified on the CD@NMs. As a result, the CD@NMs exhibited efficient CTC capture, specific CTC imaging and recognition in whole blood. CD@NMs were also successfully deployed in the specific imaging of tumor tissues in vivo. On this basis, CD@NMs are expected to provide a new platform for tumor diagnosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Jiaoyu Ren
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Zekun Chen
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Enhui Ma
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Wenjun Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221116, PR China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221116, PR China.
| | - Hong Wang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
9
|
Song Q, Liu Y, Ding X, Feng M, Li J, Liu W, Wang B, Gu Z. A drug co-delivery platform made of magnesium-based micromotors enhances combination therapy for hepatoma carcinoma cells. NANOSCALE 2023; 15:15573-15582. [PMID: 37641947 DOI: 10.1039/d3nr01548c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Combination therapy is an emerging strategy to overcome multidrug resistance (MDR) in hepatocellular carcinoma (HCC) chemotherapy treatment. However, the passive diffusion in traditional delivery systems greatly retards the approach and penetration of drugs into hepatocellular carcinoma cells and thus hinders the efficacy of combination therapy. Micro/nanomotors with autonomous locomotion in a tiny scale provide the possibility of tackling this issue. Herein, an active drug delivery micromotor platform delicately designed to load drugs with different physicochemical properties and enhance the drug permeability of cells is demonstrated for HCC chemotherapy treatment. The biocompatible micromotor platform Mg/PLGA/CHI comprised magnesium (Mg) coated with two polymer layers made of poly(lactic-co-glycolic acid) (PLGA) and chitosan (CHI), where the hydrophobic and hydrophilic drugs doxorubicin (Dox) and Curcumin (Cur) were loaded, respectively. The autonomous motion of the micromotors with velocity up to 45 μm s-1 greatly enhanced the diffusion of chemotherapeutic drugs and led to higher extracellular and intracellular drug distribution. Moreover, hydrogen produced during the motion eliminated the excess reactive oxygen species (ROS) in the human hepatocellular carcinoma (HepG2) cells. Compared with inert groups, the absorption of Dox and Cur from the active micromotors was about 2.9 and 1.5 times higher in human hepatocellular carcinoma (HepG2) cells. In addition, the anti-tumor activity also obviously improved at the micromotor concentration of 1 mg mL-1 (cell proliferation was reduced by almost 30%). Overall, this work proposes an approach based on loading different chemotherapy agents on an active delivery system to enhance drug permeability and overcome MDR and provides a potentially effective therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Qingtao Song
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing 211816, China
| | - Yilin Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyong Ding
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Miao Feng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenjuan Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing 211816, China
| | - Bohan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
10
|
Zheng Y, Wang B, Cai Y, Zhou X, Dong R. Five in One: Multi-Engine Highly Integrated Microrobot. SMALL METHODS 2023; 7:e2300390. [PMID: 37452173 DOI: 10.1002/smtd.202300390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/27/2023] [Indexed: 07/18/2023]
Abstract
A multi-engine highly integrated microrobot, which is a Janus hemispherical shell structure composed of Pt and α-Fe2 O3 , is successfully developed. The microrobot can be efficiently driven and flexibly regulated by five stimuli, including an optical field, an acoustic field, magnetic field, an electric field, and chemical fuel. In addition, no matter which way it is driven by, the direction can be effectively controlled through the magnetic field regulation. Furthermore, this microrobot can also utilize magnetic or acoustic fields to achieve excellent aggregation control and swarm movement. Finally, this study demonstrates that the microrobots' propulsion can be effectively synergistically enhanced through the simultaneous action of two driving mechanisms, which can greatly improve the performance of the motor in applications, such as pollutant degradation. This multi-engine, highly integrated microrobot not only can adapt to more complex environments and has a wider application range, better application prospects, but also provides important ideas for designing future advanced micro/nanorobots.
Collapse
Affiliation(s)
- Yuhong Zheng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Bochu Wang
- Department of chemistry and biochemistry, University of California San Diego, La Jolla, California, 92093, USA
| | - Yuepeng Cai
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials, Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, Guangdong, 524048, P. R. China
| | - Renfeng Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Zheng L, Hart N, Zeng Y. Micro-/nanoscale robotics for chemical and biological sensing. LAB ON A CHIP 2023; 23:3741-3767. [PMID: 37496448 PMCID: PMC10530003 DOI: 10.1039/d3lc00404j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The field of micro-/nanorobotics has attracted extensive interest from a variety of research communities and witnessed enormous progress in a broad array of applications ranging from basic research to global healthcare and to environmental remediation and protection. In particular, micro-/nanoscale robots provide an enabling platform for the development of next-generation chemical and biological sensing modalities, owing to their unique advantages as programmable, self-sustainable, and/or autonomous mobile carriers to accommodate and promote physical and chemical processes. In this review, we intend to provide an overview of the state-of-the-art development in this area and share our perspective in the future trend. This review starts with a general introduction of micro-/nanorobotics and the commonly used methods for propulsion of micro-/nanorobots in solution, along with the commonly used methods in their fabrication. Next, we comprehensively summarize the current status of the micro/nanorobotic research in relevance to chemical and biological sensing (e.g., motion-based sensing, optical sensing, and electrochemical sensing). Following that, we provide an overview of the primary challenges currently faced in the micro-/nanorobotic research. Finally, we conclude this review by providing our perspective detailing the future application of soft robotics in chemical and biological sensing.
Collapse
Affiliation(s)
- Liuzheng Zheng
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA.
| | - Nathan Hart
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA.
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA.
| |
Collapse
|
12
|
Das SS, Yossifon G. Optoelectronic Trajectory Reconfiguration and Directed Self-Assembly of Self-Propelling Electrically Powered Active Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206183. [PMID: 37069767 PMCID: PMC10238198 DOI: 10.1002/advs.202206183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/25/2023] [Indexed: 06/04/2023]
Abstract
Self-propelling active particles are an exciting and interdisciplinary emerging area of research with projected biomedical and environmental applications. Due to their autonomous motion, control over these active particles that are free to travel along individual trajectories, is challenging. This work uses optically patterned electrodes on a photoconductive substrate using a digital micromirror device (DMD) to dynamically control the region of movement of self-propelling particles (i.e., metallo-dielectric Janus particles (JPs)). This extends previous studies where only a passive micromotor is optoelectronically manipulated with a translocating optical pattern that illuminates the particle. In contrast, the current system uses the optically patterned electrode merely to define the region within which the JPs moved autonomously. Interestingly, the JPs avoid crossing the optical region's edge, which enables constraint of the area of motion and to dynamically shape the JP trajectory. Using the DMD system to simultaneously manipulate several JPs enables to self-assemble the JPs into stable active structures (JPs ring) with precise control over the number of participating JPs and passive particles. Since the optoelectronic system is amenable to closed-loop operation using real-time image analysis, it enables exploitation of these active particles as active microrobots that can be operated in a programmable and parallelized manner.
Collapse
Affiliation(s)
- Sankha Shuvra Das
- School of Mechanical EngineeringTel‐Aviv UniversityTel‐Aviv69978Israel
| | - Gilad Yossifon
- School of Mechanical EngineeringTel‐Aviv UniversityTel‐Aviv69978Israel
- Department of Biomedical EngineeringTel‐Aviv UniversityTel‐Aviv69978Israel
| |
Collapse
|
13
|
Lv Y, Pu R, Tao Y, Yang X, Mu H, Wang H, Sun W. Applications and Future Prospects of Micro/Nanorobots Utilizing Diverse Biological Carriers. MICROMACHINES 2023; 14:mi14050983. [PMID: 37241607 DOI: 10.3390/mi14050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Targeted drug delivery using micro-nano robots (MNRs) is a rapidly advancing and promising field in biomedical research. MNRs enable precise delivery of drugs, addressing a wide range of healthcare needs. However, the application of MNRs in vivo is limited by power issues and specificity in different scenarios. Additionally, the controllability and biological safety of MNRs must be considered. To overcome these challenges, researchers have developed bio-hybrid micro-nano motors that offer improved accuracy, effectiveness, and safety for targeted therapies. These bio-hybrid micro-nano motors/robots (BMNRs) use a variety of biological carriers, blending the benefits of artificial materials with the unique features of different biological carriers to create tailored functions for specific needs. This review aims to give an overview of the current progress and application of MNRs with various biocarriers, while exploring the characteristics, advantages, and potential hurdles for future development of these bio-carrier MNRs.
Collapse
Affiliation(s)
- Yu Lv
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ruochen Pu
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yining Tao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongsheng Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Sun
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
14
|
Zhu S, Cheng Y, Chen J, Liu G, Luo T, Yang R. Dynamically reversible cooperation and interaction of multiple rotating micromotors. LAB ON A CHIP 2023; 23:1905-1917. [PMID: 36880376 DOI: 10.1039/d3lc00108c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Micromotors have been shown to have great potential in various fields (e.g., targeted therapeutics, self-organizing systems), and research on the cooperative and interactive behaviours of multiple micromotors could potentially revolutionize many fields in terms of performing multiple or complex tasks to compensate for the limitations of individual micromotors; however, dynamically reversible transitions among diverse behaviours remain much less explored, and such dynamic transformations are advantageous for achieving complex tasks. Here, we present a microsystem consisting of multiple disk-like micromotors capable of performing reversible transformations between cooperative and interactive behaviours at the liquid surface. The micromotors with aligned magnetic particles in our system have great magnet properties, which provides a strong magnetic interaction with each other and is vital for the whole microsystem. We offer and analyse the physical models among multiple micromotors concerning the cooperative and interactive modes in the lower and higher frequency ranges, respectively, between which the state transformation can reversibly occur. Furthermore, based on the proposed reversible microsystem, the feasibility of the application of self-organization is verified by demonstrating three different dynamic self-organizing behaviours. Our proposed dynamically reversible system has great potential to serve as a paradigm for studying cooperative and interactive behaviours among multiple micromotors in the future.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Yifan Cheng
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Jialong Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Tingting Luo
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
15
|
Wu Y, Yakov S, Fu A, Yossifon G. A Magnetically and Electrically Powered Hybrid Micromotor in Conductive Solutions: Synergistic Propulsion Effects and Label-Free Cargo Transport and Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204931. [PMID: 36507618 PMCID: PMC10015886 DOI: 10.1002/advs.202204931] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Indexed: 06/18/2023]
Abstract
Electrically powered micro- and nanomotors are promising tools for in vitro single-cell analysis. In particular, single cells can be trapped, transported, and electroporated by a Janus particle (JP) using an externally applied electric field. However, while dielectrophoretic (DEP)-based cargo manipulation can be achieved at high-solution conductivity, electrical propulsion of these micromotors becomes ineffective at solution conductivities exceeding ≈0.3 mS cm-1 . Here, JP cargo manipulation and transport capabilities to conductive near-physiological (<6 mS cm-1 ) solutions are extended successfully by combining magnetic field-based micromotor propulsion and navigation with DEP-based manipulation of various synthetic and biological cargos. Combination of a rotating magnetic field and electric field results in enhanced micromotor mobility and steering control through tuning of the electric field frequency. In addition, the micromotor's ability of identifying apoptotic cell among viable and necrotic cells based on their dielectrophoretic difference is demonstrated, thus, enabling to analyze the apoptotic status in the single-cell samples for drug discovery, cell therapeutics, and immunotherapy. The ability to trap and transport live cells towards regions containing doxorubicin-loaded liposomes is also demonstrated. This hybrid micromotor approach for label-free trapping, transporting, and sensing of selected cells within conductive solutions opens new opportunities in drug delivery and single-cell analysis, where close-to-physiological media conditions are necessary.
Collapse
Affiliation(s)
- Yue Wu
- School of Mechanical EngineeringUniversity of Tel‐AvivTel‐Aviv69978Israel
| | - Sivan Yakov
- Faculty of Mechanical EngineeringMicro‐ and Nanofluidics LaboratoryTechnion—Israel Institute of TechnologyHaifa32000Israel
| | - Afu Fu
- Technion Integrated Cancer CenterThe Rappaport Faculty of Medicine and Research InstituteTechnion—Israel Institute of TechnologyHaifa3109602Israel
| | - Gilad Yossifon
- School of Mechanical EngineeringUniversity of Tel‐AvivTel‐Aviv69978Israel
- Faculty of Mechanical EngineeringMicro‐ and Nanofluidics LaboratoryTechnion—Israel Institute of TechnologyHaifa32000Israel
| |
Collapse
|
16
|
Shah ZH, Wu B, Das S. Multistimuli-responsive microrobots: A comprehensive review. Front Robot AI 2022; 9:1027415. [PMID: 36420129 PMCID: PMC9676497 DOI: 10.3389/frobt.2022.1027415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2023] Open
Abstract
Untethered robots of the size of a few microns have attracted increasing attention for the potential to transform many aspects of manufacturing, medicine, health care, and bioengineering. Previously impenetrable environments have become available for high-resolution in situ and in vivo manipulations as the size of the untethered robots goes down to the microscale. Nevertheless, the independent navigation of several robots at the microscale is challenging as they cannot have onboard transducers, batteries, and control like other multi-agent systems, due to the size limitations. Therefore, various unconventional propulsion mechanisms have been explored to power motion at the nanoscale. Moreover, a variety of combinations of actuation methods has also been extensively studied to tackle different issues. In this survey, we present a thorough review of the recent developments of various dedicated ways to actuate and control multistimuli-enabled microrobots. We have also discussed existing challenges and evolving concepts associated with each technique.
Collapse
Affiliation(s)
| | | | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
17
|
Huang S, Gao Y, Lv Y, Wang Y, Cao Y, Zhao W, Zuo D, Mu H, Hua Y. Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens. MICROMACHINES 2022; 13:mi13101780. [PMID: 36296133 PMCID: PMC9610721 DOI: 10.3390/mi13101780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/01/2023]
Abstract
Natural biological lumens in the human body, such as blood vessels and the gastrointestinal tract, are important to the delivery of materials. Depending on the anatomic features of these biological lumens, the invention of nano/micromotors could automatically locomote targeted sites for disease treatment and diagnosis. These nano/micromotors are designed to utilize chemical, physical, or even hybrid power in self-propulsion or propulsion by external forces. In this review, the research progress of nano/micromotors is summarized with regard to treatment and diagnosis in different biological lumens. Challenges to the development of nano/micromotors more suitable for specific biological lumens are discussed, and the overlooked biological lumens are indicated for further studies.
Collapse
Affiliation(s)
- Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghua Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghao Cao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| |
Collapse
|
18
|
Wu Y, Boymelgreen A, Yossifon G. Micromotor-mediated label-free cargo manipulation. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|