1
|
Wang S, Lim S, Tasmim S, Kalairaj MS, Rivera-Tarazona LK, Abdelrahman MK, Javed M, George SM, Lee YJ, Jawed MK, Ware TH. Reconfigurable Growth of Engineered Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309818. [PMID: 38288578 DOI: 10.1002/adma.202309818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Indexed: 02/10/2024]
Abstract
The growth of multicellular organisms is a process akin to additive manufacturing where cellular proliferation and mechanical boundary conditions, among other factors, drive morphogenesis. Engineers have limited ability to engineer morphogenesis to manufacture goods or to reconfigure materials comprised of biomass. Herein, a method that uses biological processes to grow and regrow magnetic engineered living materials (mELMs) into desired geometries is reported. These composites contain Saccharomyces cerevisiae and magnetic particles within a hydrogel matrix. The reconfigurable manufacturing process relies on the growth of living cells, magnetic forces, and elastic recovery of the hydrogel. The mELM then adopts a form in an external magnetic field. Yeast within the material proliferates, resulting in 259 ± 14% volume expansion. Yeast proliferation fixes the magnetic deformation, even when the magnetic field is removed. The shape fixity can be up to 99.3 ± 0.3%. The grown mELM can recover up to 73.9 ± 1.9% of the original form by removing yeast cell walls. The directed growth and recovery process can be repeated at least five times. This work enables ELMs to be processed and reprocessed into user-defined geometries without external material deposition.
Collapse
Affiliation(s)
- Suitu Wang
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Sangmin Lim
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Seelay Tasmim
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | | | | | - Mustafa K Abdelrahman
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Mahjabeen Javed
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Sasha M George
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Yoo Jin Lee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - M Khalid Jawed
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Taylor H Ware
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77840, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| |
Collapse
|
3
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|