1
|
Vrážel M, Ismail RK, Courson R, Hammouti A, Bouška M, Larrodé A, Baillieul M, Giraud W, Le Floch S, Bodiou L, Charrier J, Boukerma K, Michel K, Němec P, Nazabal V. Surface functionalization of a chalcogenide IR photonic sensor by means of a polymer membrane for water pollution remediation. Analyst 2024; 149:4723-4735. [PMID: 39105485 DOI: 10.1039/d4an00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Rapid, simultaneous detection of organic chemical pollutants in water is an important issue to solve for protecting human health. This study investigated the possibility of developing an in situ reusable optical sensor capable of selective measurements utilizing a chalcogenide transducer supplemented by a hydrophobic polymer membrane with detection based on evanescent waves in the mid-infrared spectrum. In order to optimise a polyisobutylene hydrophobic film deposited on a chalcogenide waveguide, a zinc selenide prism was utilized as a testbed for performing attenuated total reflection with Fourier-transform infrared spectroscopy. To comply with the levels mentioned in health guidelines, the target detection range in this study was kept rather low, with the concentration range extended from 50 ppb to 100 ppm to cover accidental pollution problems, while targeted hydrocarbons (benzene, toluene, and xylene) were still detected at a concentration of 100 ppb. Infrared measurements in the selected range showed a linear behaviour, with the exception of two constantly reproducible plateau phases around 25 and 80 ppm, which were observable for two polymer film thicknesses of 5 and 10 μm. The polymer was also found to be reusable by regenerating it with water between individual measurements by increasing the water temperature and flow to facilitate reverse exchange kinetics. Given the good conformability of the hydrophobic polymer when coated on chalcogenide photonic circuits and its demonstrated ability to detect organic pollutants in water and to be regenerated afterwards, a microfluidic channel utilising water flow over an evanescent wave optical transducer based on a chalcogenide waveguide and a polyisobutylene (PIB) hydrophobic layer deposited on its surface was successfully fabricated from polydimethylsiloxane by filling a mold prepared via CAD and 3D printing techniques.
Collapse
Affiliation(s)
- Martin Vrážel
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Raïssa Kadar Ismail
- Univ Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
- BRGM, Direction Eau, Environnement et Ecotechnologies, 45100 Orleans, France
| | - Rémi Courson
- IFREMER, Laboratoire Détection, Capteurs et Mesures, 29280 Plouzané, France
| | - Abdelali Hammouti
- Univ Rennes, CNRS, Institut Foton - UMR 6082, F-22305 Lannion, France
| | - Marek Bouška
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Amélie Larrodé
- Univ Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
| | - Marion Baillieul
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | | | | | - Loïc Bodiou
- Univ Rennes, CNRS, Institut Foton - UMR 6082, F-22305 Lannion, France
| | - Joël Charrier
- Univ Rennes, CNRS, Institut Foton - UMR 6082, F-22305 Lannion, France
| | - Kada Boukerma
- IFREMER, Laboratoire Détection, Capteurs et Mesures, 29280 Plouzané, France
| | - Karine Michel
- BRGM, Direction Eau, Environnement et Ecotechnologies, 45100 Orleans, France
| | - Petr Němec
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Virginie Nazabal
- Univ Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| |
Collapse
|
2
|
Li T, Yuan Y, Gu L, Li J, Shao Y, Yan S, Zhao Y, Carlos C, Dong Y, Qian H, Wang X, Wu W, Wang S, Wang Z, Wang X. Ultrastable piezoelectric biomaterial nanofibers and fabrics as an implantable and conformal electromechanical sensor patch. SCIENCE ADVANCES 2024; 10:eadn8706. [PMID: 39028816 PMCID: PMC11259165 DOI: 10.1126/sciadv.adn8706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Poly(l-lactic acid) (PLLA) is a widely used U.S. Food and Drug Administration-approved implantable biomaterial that also possesses strong piezoelectricity. However, the intrinsically low stability of its high-energy piezoelectric β phase and random domain orientations associated with current synthesis approaches remain a critical roadblock to practical applications. Here, we report an interfacial anchoring strategy for fabricating core/shell PLLA/glycine (Gly) nanofibers (NFs) by electrospinning, which show a high ratio of piezoelectric β phase and excellent orientation alignment. The self-assembled core/shell structure offers strong intermolecular interactions between the -OH groups on Gly and C=O groups on PLLA, which promotes the crystallization of oriented PLLA polymer chains and stabilizes the β phase structure. As-received core/shell NFs exhibit substantially enhanced piezoelectric performance and excellent stability. An all NF-based nonwoven fabric is fabricated and assembled as a flexible nanogenerator. The device offers excellent conformality to heavily wrinkled surfaces and thus can precisely detect complex physiological motions often found from biological organs.
Collapse
Affiliation(s)
- Tong Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yongjiu Yuan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Long Gu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yan Shao
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shan Yan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yunhe Zhao
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Corey Carlos
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hong Qian
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing 210002, China
| | - Xiong Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Wenlong Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Shao Y, Yan J, Zhi Y, Li C, Li Q, Wang K, Xia R, Xiang X, Liu L, Chen G, Zhang H, Cai D, Wang H, Cheng X, Yang C, Ren F, Yu Y. A universal packaging substrate for mechanically stable assembly of stretchable electronics. Nat Commun 2024; 15:6106. [PMID: 39030235 PMCID: PMC11271615 DOI: 10.1038/s41467-024-50494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Stretchable electronics commonly assemble multiple material modules with varied bulk moduli and surface chemistry on one packaging substrate. Preventing the strain-induced delamination between the module and the substrate has been a critical challenge. Here we develop a packaging substrate that delivers mechanically stable module/substrate interfaces for a broad range of stiff and stretchable modules with varied surface chemistries. The key design of the substrate was to introduce module-specific stretchability and universal adhesiveness by regionally tuning the bulk molecular mobility and surface molecular polarity of a near-hermetic elastic polymer matrix. The packaging substrate can customize the deformation of different modules while avoiding delamination upon stretching up to 600%. Based on this substrate, we fabricated a fully stretchable bioelectronic device that can serve as a respiration sensor or an electric generator with an in vivo lifetime of 10 weeks. This substrate could be a versatile platform for device assembly.
Collapse
Affiliation(s)
- Yan Shao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jianfeng Yan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinglin Zhi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingxian Li
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaimin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Xia
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyue Xiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liqian Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guoli Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanxue Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Daohang Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haochuan Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Canhui Yang
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yanhao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Liu W, Wang X. Recent Advances of Nanogenerator Technology for Cardiovascular Sensing and Monitoring. NANO ENERGY 2023; 117:108910. [PMID: 39183759 PMCID: PMC11343574 DOI: 10.1016/j.nanoen.2023.108910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cardiovascular sensing and monitoring is a widely used function in cardiovascular devices. Nowadays, achieving desired flexibility, wearability and implantability becomes a major design goal for the advancement of this family of devices. As an emerging technology, nanogenerator (NG) offers an intriguing promise for replacing the battery, an essential obstacle toward tissue-like soft electronics. This article reviews most recent advancements in NG technology for advanced cardiovascular sensing and monitoring. Based on the application targets, the discuss covers implantable NGs on hearts, implantable NGs for blood vessel grafts and patches, and wearable NGs with various sensing functions. The applications of NGs as a power source and as an electromechanical sensing element are both discussed. At the end, current challenges in this direction and future research perspectives are elaborated. This emerging and impactful application direction reviewed in this article is expected to inspire many new research and commercialization opportunities in the field of NG technology.
Collapse
Affiliation(s)
- Wenjian Liu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Lv J, Thangavel G, Lee PS. Reliability of printed stretchable electronics based on nano/micro materials for practical applications. NANOSCALE 2023; 15:434-449. [PMID: 36515001 DOI: 10.1039/d2nr04464a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent decades have witnessed the booming development of stretchable electronics based on nano/micro composite inks. Printing is a scalable, low-cost, and high-efficiency fabrication tool to realize stretchable electronics through additive processes. However, compared with conventional flexible electronics, stretchable electronics need to experience more severe mechanical deformation which may cause destructive damage. Most of the reported works in this field mainly focus on how to achieve a high stretchability of nano/micro composite conductors or single working modules/devices, with limited attention given to the reliability for practical applications. In this minireview, we summarized the failure modes when printing stretchable electronics using nano/micro composite ink, including dysfunction of the stretchable interconnects, the stress-concentrated rigid-soft interfaces for hybrid electronics, the vulnerable vias upon stretching, thermal accumulation, and environmental instability of stretchable materials. Strategies for tackling these challenges to realize reliable performances are proposed and discussed. Our review provides an overview on the importance of reliable, printable, and stretchable electronics, which are the key enablers in propelling stretchable electronics from fancy demos to practical applications.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| |
Collapse
|
6
|
Ling W, Wang Y, Lu B, Shang X, Wu Z, Chen Z, Li X, Zou C, Yan J, Zhou Y, Liu J, Li H, Que K, Huang X. Continuously Quantifying Oral Chemicals Based on Flexible Hybrid Electronics for Clinical Diagnosis and Pathogenetic Study. Research (Wash D C) 2022; 2022:9810129. [PMID: 36072268 PMCID: PMC9414179 DOI: 10.34133/2022/9810129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022] Open
Abstract
Simultaneous monitoring of diverse salivary parameters can reveal underlying mechanisms of intraoral biological processes and offer profound insights into the evolution of oral diseases. However, conventional analytical devices with bulky volumes, rigid formats, and discrete sensing mechanisms deviate from the requirements of continuous biophysiological quantification, resulting in huge difficulty in precise clinical diagnosis and pathogenetic study. Here, we present a flexible hybrid electronic system integrated with functional nanomaterials to continuously sense Ca2+, pH, and temperature for wireless real-time oral health monitoring. The miniaturized system with an island-bridge structure that is designed specifically to fit the teeth is only 0.4 g in weight and 31.5×8.5×1.35 mm3 in dimension, allowing effective integration with customized dental braces and comfort attachment on teeth. Characterization results indicate high sensitivities of 30.3 and 60.6 mV/decade for Ca2+ and pH with low potential drifts. The system has been applied in clinical studies to conduct Ca2+ and pH mappings on carious teeth, biophysiological monitoring for up to 12 h, and outcome evaluation of dental restoration, providing quantitative data to assist in the diagnosis and understanding of oral diseases. Notably, caries risk assessment of 10 human subjects using the flexible system validates the important role of saliva buffering capacity in caries pathogenesis. The proposed flexible system may offer an open platform to carry diverse components to support both clinical diagnosis and treatment as well as fundamental research for oral diseases and induced systemic diseases.
Collapse
Affiliation(s)
- Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, Jiaxing 314006, China
| | - Yinghui Wang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Bingyu Lu
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Xue Shang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, Jiaxing 314006, China
| | - Zhaorun Chen
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xueting Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chenchen Zou
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Jinjie Yan
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yunjie Zhou
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Jie Liu
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Hongjie Li
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Kehua Que
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, Jiaxing 314006, China
| |
Collapse
|