1
|
Luo C, Zhang H, Sun C, Chen X, Zhang W, Mu P, Xu G, Wu R, Lv Z, Zhou X, Cui G. A Mechanically Robust In-Situ Solidified Polymer Electrolyte for SiO x-Based Anodes Toward High-Energy Lithium Batteries. NANO-MICRO LETTERS 2025; 17:250. [PMID: 40338412 PMCID: PMC12061835 DOI: 10.1007/s40820-025-01759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Silicon suboxide (SiOx, 0 < x < 2) is an appealing anode material to replace traditional graphite owing to its much higher theoretical specific capacity enabling higher-energy-density lithium batteries. Nevertheless, the huge volume change and rapid capacity decay of SiOx electrodes during cycling pose huge challenges to their large-scale practical applications. To eliminate this bottleneck, a dragonfly wing microstructure-inspired polymer electrolyte (denoted as PPM-PE) is developed based on in-situ polymerization of bicyclic phosphate ester- and urethane motif-containing monomer and methyl methacrylate in traditional liquid electrolyte. PPM-PE delivers excellent mechanical properties, highly correlated with the formation of a micro-phase separation structure similar with dragonfly wings. By virtue of superior mechanical properties and the in-situ solidified preparation method, PPM-PE can form a 3D polymer network buffer against stress within the electrode particles gap, enabling much suppressed electrode volume expansion and more stabilized solid electrolyte interface along with evidently decreased electrolyte decomposition. Resultantly, PPM-PE shows significant improvements in both cycling and rate performance in button and soft package batteries with SiOx-based electrodes, compared with the liquid electrolyte counterpart. Such a dragonfly wing microstructure-inspired design philosophy of in-situ solidified polymer electrolytes helps facilitate the practical implementation of high-energy lithium batteries with SiOx-based anodes.
Collapse
Affiliation(s)
- Cizhen Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Huanrui Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China.
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China.
| | - Chenghao Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Wenjun Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Pengzhou Mu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Gaojie Xu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Rongxian Wu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Zhaolin Lv
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Xinhong Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Industrial Energy Storage Research Institute, Chinese Academy of Science, Qingdao, 266101, People's Republic of China.
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
2
|
Hu C, Zhang M, Zhou W, Liu C, Lin Z. Accurate prelithiation of lithium ion battery SiO x anodes towards improved initial coulombic efficiency. Chem Commun (Camb) 2025; 61:1204-1207. [PMID: 39699175 DOI: 10.1039/d4cc05415f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
We propose an accurate prelithiation method for SiOx anodes using ball-milling with LiF. The formation of a LiF-rich SEI layer reduces active lithium loss, resulting in excellent electrochemical performance. This study provides a new approach for developing high-performance silicon-based anodes for lithium-ion batteries.
Collapse
Affiliation(s)
- Cuicui Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Minghao Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wenbo Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chenyu Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhan Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| |
Collapse
|
3
|
Yu L, Tao B, Ma L, Zhao F, Wei L, Tang G, Wang Y, Guo X. A Robust Network Sodium Carboxymethyl Cellulose-Epichlorohydrin Binder for Silicon Anodes in Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39115326 DOI: 10.1021/acs.langmuir.4c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Silicon (Si), as an ideal anode component for lithium-ion batteries, is susceptible to substantial volume changes, leading to pulverization and excessive electrolyte consumption, ultimately resulting in a rapid decline in the cycle stability. Herein, a new sodium carboxymethyl cellulose-epichlorohydrin (CMC-ECH) binder featuring a three-dimensional (3D) network cross-linked structure is synthesized by a simple ring-opening reaction, which can effectively bond the Si anode through abundant covalent and hydrogen bonds to mitigate its pulverization. Benefitting from the merits of the CMC-ECH binder, the electrochemical performance is significantly enhanced compared to the CMC binder. The CMC-ECH binder is applied to Si anodes, a specific capacity of 1054.2 mAh g-1 can be maintained at 0.2 C following 200 cycles under an elevated Si mass loading of around 1.0 mg cm-2, and the corresponding capacity retention is 65.6%. In the case of the LiFePO4//Si@CMC-ECH full battery, the cycle stability exhibits a substantial enhancement compared with the LiFePO4//Si@CMC full battery. Furthermore, the CMC-ECH binder demonstrates compatibility with micron-Si anode materials. Based on the above, we have successfully developed a facilely prepared water-based CMC-ECH binder that is suitable for Si and micron-Si anodes in lithium-ion batteries.
Collapse
Affiliation(s)
- Liming Yu
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai 200240, China
| | - Bowen Tao
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Lei Ma
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai 200240, China
| | - Fangfang Zhao
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai 200240, China
| | - Liangming Wei
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai 200240, China
| | - Gen Tang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Yue Wang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| |
Collapse
|
4
|
He Q, Ning J, Chen H, Jiang Z, Wang J, Chen D, Zhao C, Liu Z, Perepichka IF, Meng H, Huang W. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. Chem Soc Rev 2024; 53:7091-7157. [PMID: 38845536 DOI: 10.1039/d4cs00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Energy storage devices with high power and energy density are in demand owing to the rapidly growing population, and lithium-ion batteries (LIBs) are promising rechargeable energy storage devices. However, there are many issues associated with the development of electrode materials with a high theoretical capacity, which need to be addressed before their commercialization. Extensive research has focused on the modification and structural design of electrode materials, which are usually expensive and sophisticated. Besides, polymer binders are pivotal components for maintaining the structural integrity and stability of electrodes in LIBs. Polyvinylidene difluoride (PVDF) is a commercial binder with superior electrochemical stability, but its poor adhesion, insufficient mechanical properties, and low electronic and ionic conductivity hinder its wide application as a high-capacity electrode material. In this review, we highlight the recent progress in developing different polymeric materials (based on natural polymers and synthetic non-conductive and electronically conductive polymers) as binders for the anodes and cathodes in LIBs. The influence of the mechanical, adhesion, and self-healing properties as well as electronic and ionic conductivity of polymers on the capacity, capacity retention, rate performance and cycling life of batteries is discussed. Firstly, we analyze the failure mechanisms of binders based on the operation principle of lithium-ion batteries, introducing two models of "interface failure" and "degradation failure". More importantly, we propose several binder parameters applicable to most lithium-ion batteries and systematically consider and summarize the relationships between the chemical structure and properties of the binder at the molecular level. Subsequently, we select silicon and sulfur active electrode materials as examples to discuss the design principles of the binder from a molecular structure point of view. Finally, we present our perspectives on the development directions of binders for next-generation high-energy-density lithium-ion batteries. We hope that this review will guide researchers in the further design of novel efficient binders for lithium-ion batteries at the molecular level, especially for high energy density electrode materials.
Collapse
Affiliation(s)
- Qiang He
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Jiaoyi Ning
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhixiang Jiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Jianing Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Dinghui Chen
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Changbin Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
| | - Zhenguo Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Igor F Perepichka
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody Street 9, Gliwice 44-100, Poland
- Centre for Organic and Nanohybrid Electronics (CONE), Silesian University of Technology, S. Konarskiego Street 22b, Gliwice 44-100, Poland
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
5
|
Tian G, Yang D, Chen C, Duan X, Kim DH, Chen H. Simultaneous Presentation of Dexamethasone and Nerve Growth Factor via Layered Carbon Nanotubes and Polypyrrole to Interface Neural Cells. ACS Biomater Sci Eng 2023; 9:5015-5027. [PMID: 37489848 DOI: 10.1021/acsbiomaterials.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The implantation of neural electrodes usually induces acute and chronic inflammation, which can result in the formation of glial scars encapsulating the implanted electrodes and the loss of neurons near the active electrode sites. Local presentation of anti-inflammatory drugs or neural protective factors has been evidenced as an effective strategy to modulate inflammatory responses and promote electrode-neuron integration. Here, a novel delivery system for the simultaneous presentation of both anti-inflammatory drugs (dexamethasone, Dex) and nerve-growth-promoting factors (nerve growth factor, NGF) from the electrode sites was developed via layer-structured carbon nanotubes and conductive polymers. The modified electrodes exhibited higher charge storage capacitance and lower electrochemical impedance compared to unmodified electrodes and electrodes coated with polypyrrole/Dex. Dex released from the functional coating under controlled electrochemical stimulation was able to inhibit the lipopolysaccharide-induced secretion or mRNA transcription of inflammatory cytokines, including nitric oxide, TNF-α, and IL-6 in RAW264.7 cells, and control the activation of cultured astrocytes. In addition, the functional coatings did not show a toxic effect on PC12 cells and primary neural cells but exhibited promoted activities on the adhesion, growth, and neurite extension of neural cells.
Collapse
Affiliation(s)
- Guangzhao Tian
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Dan Yang
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Chunrong Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Xiaoge Duan
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| |
Collapse
|
6
|
Li J, Yang K, Zheng Y, Gao S, Chai J, Lei X, Zhan Z, Xu Y, Chen M, Liu Z, Guo Q. Water-Soluble Polyamide Acid Binder with Fast Li + Transfer Kinetics for Silicon Suboxide Anodes in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:30302-30311. [PMID: 37337474 PMCID: PMC10317022 DOI: 10.1021/acsami.3c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Silicon suboxide (SiOx) anodes have attracted considerable attention owing to their excellent cycling performance and rate capability compared to silicon (Si) anodes. However, SiOx anodes suffer from high volume expansion similar to Si anodes, which has been a challenge in developing suitable commercial binders. In this study, a water-soluble polyamide acid (WS-PAA) binder with ionic bonds was synthesized. The amide bonds inherent in the WS-PAA binder form a stable hydrogen bond with the SiOx anode and provide sufficient mechanical strength for the prepared electrodes. In addition, the ionic bonds introduced by triethylamine (TEA) induce water solubility and new Li+ transport channels to the binder, achieving enhanced electrochemical properties for the resulting SiOx electrodes, such as cycling and rate capability. The SiOx anode with the WS-PAA binder exhibited a high initial capacity of 1004.7 mAh·g-1 at a current density of 0.8 A·g-1 and a capacity retention of 84.9% after 200 cycles. Therefore, WS-PAA is a promising binder for SiOx anodes compared with CMC and SA.
Collapse
Affiliation(s)
- Jian Li
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
- Hubei
Key Laboratory of Plasma Chemistry and Advanced Materials, School
of Materials Science and Engineering, Wuhan
Institute of Technology, Wuhan 430205, China
| | - Kai Yang
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Yun Zheng
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Shuyu Gao
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Jingchao Chai
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Xiaohua Lei
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Zhuo Zhan
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Yuanjian Xu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Maige Chen
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Zhihong Liu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Qingzhong Guo
- Hubei
Key Laboratory of Plasma Chemistry and Advanced Materials, School
of Materials Science and Engineering, Wuhan
Institute of Technology, Wuhan 430205, China
| |
Collapse
|
7
|
Long J, He W, Liao H, Ye W, Dou H, Zhang X. In Situ Prepared Three-Dimensional Covalent and Hydrogen Bond Synergistic Binder to Boost the Performance of SiO x Anodes for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10726-10734. [PMID: 36787129 DOI: 10.1021/acsami.2c21689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymer binders play an important role in enhancing the electrochemical performance of silicon-based anodes to alleviate the volume expansion for lithium-ion batteries. It is difficult for common one-dimensional (1D) linear binders to limit the volume expansion of a silicon-based electrode when combined with silicon-based particles with scant binding points. Therefore, it is necessary to design a three-dimensional (3D) network structure, which has multiple binding points with the silicon particles to dissipate the mechanical stress in the continuous charge and discharge circulation. Here, a covalent and hydrogen bond synergist 3D network green binder (poly(acrylic acid) (PAA)-dextrin 9 (Dex9)) was prepared by the simple in situ thermal condensation of a one-dimensional liner binder PAA and Dex in the electrode fabrication process. The optimized SiOx@PAA-Dex9 electrode exhibits an initial Coulombic efficiency (ICE) of 82.4% at a current density of 0.2 A g-1. At a high current density of 1 A g-1, it retains a capacity of 607 mAh g-1 after 300 cycles, which is approximately twice as high as that of the SiOx@PAA electrode. Furthermore, the results of in situ electrochemical dilatometry (ECD) and characterization of electrode structures demonstrate that the PAA-Dex9 binder can effectively buffer the huge volume change and maintain the integrity of the SiOx electrodes. The research overcomes the low electrochemical stability difficulty of the 3D binder and sheds light on developing the simple fabrication procedure of an electrode.
Collapse
Affiliation(s)
- Jiang Long
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wenjie He
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Haojie Liao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wenjun Ye
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
8
|
Wang D, Fu X, Zhou D, Gao J, Bai W. Engineering of a newly isolated Bacillus tequilensis BL01 for poly-γ-glutamic acid production from citric acid. Microb Cell Fact 2022; 21:276. [PMID: 36581997 PMCID: PMC9798646 DOI: 10.1186/s12934-022-01994-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Poly γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. For glutamic acid-independent strains, the titer of γ-PGA is too low to meet the industrial demand. In this study, we isolated a novel γ-PGA-producing strain, Bacillus tequilensis BL01, and multiple genetic engineering strategies were implemented to improve γ-PGA production. RESULTS First, the one-factor-at-a-time method was used to investigate the influence of carbon and nitrogen sources and temperature on γ-PGA production. The optimal sources of carbon and nitrogen were sucrose and (NH4)2SO4 at 37 °C, respectively. Second, the sucA, gudB, pgdS, and ggt genes were knocked out simultaneously, which increased the titer of γ-PGA by 1.75 times. Then, the titer of γ-PGA increased to 18.0 ± 0.3 g/L by co-overexpression of the citZ and pyk genes in the mutant strain. Furthermore, the γ-PGA titer reached 25.3 ± 0.8 g/L with a productivity of 0.84 g/L/h and a yield of 1.50 g of γ-PGA/g of citric acid in fed-batch fermentation. It should be noted that this study enables the synthesis of low (1.84 × 105 Da) and high (2.06 × 106 Da) molecular weight of γ-PGA by BL01 and the engineering strain. CONCLUSION The application of recently published strategies to successfully improve γ-PGA production for the new strain B. tequilensis BL01 is reported. The titer of γ-PGA increased 2.17-fold and 1.32-fold compared with that of the wild type strain in the flask and 5 L fermenter. The strain shows excellent promise as a γ-PGA producer compared with previous studies. Meanwhile, different molecular weights of γ-PGA were obtained, enhancing the scope of application in industry.
Collapse
Affiliation(s)
- Dexin Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China
| | - Xiaoping Fu
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China
| | - Dasen Zhou
- grid.413109.e0000 0000 9735 6249College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Jiaqi Gao
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049 China
| | - Wenqin Bai
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
9
|
Lai G, Wei X, Zhou B, Huang X, Tang W, Wu S, Lin Z. Engineering High-Performance SiO x Anode Materials with a Titanium Oxynitride Coating for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49830-49838. [PMID: 36314536 DOI: 10.1021/acsami.2c15064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Micron-sized silicon oxide (SiOx) has been regarded as a promising anode material for new-generation lithium-ion batteries due to its high capacity and low cost. However, the distinct volume expansion during the repeated (de)lithiation process and poor conductivity can lead to structural collapse of the electrode and capacity fading. In this study, SiOx anode materials coated with TiO0.6N0.4 layers are fabricated by a facile solvothermal and thermal reduction technique. The TiO0.6N0.4 layers are homogeneously dispersed on SiOx particles and form an intimate contact. The TiO0.6N0.4 layers can enhance the conductivity and suppress volume expansion of the SiOx anode, which facilitate ion/electron transport and maintain the integrity of the overall electrode structure. The as-prepared SiOx-TiON-200 composites demonstrate a high reversible capacity of 854 mAh g-1 at 0.5 A g-1 with a mass loading of 2.0 mg cm-2 after 250 cycles. This surface modification technique could be extended to other anodes with low conductivity and large volume expansion for lithium-ion batteries.
Collapse
Affiliation(s)
- Guoyong Lai
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Xiujuan Wei
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Binbin Zhou
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xiuhuan Huang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Weiting Tang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Shuxing Wu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Zhan Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| |
Collapse
|
10
|
Weng Z, Di S, Chen L, Wu G, Zhang Y, Jia C, Zhang N, Liu X, Chen G. Random Copolymer Hydrogel as Elastic Binder for the SiO x Microparticle Anode in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42494-42503. [PMID: 36073747 DOI: 10.1021/acsami.2c12128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silicon suboxides (SiOx) have been widely concerned as a practical anode material for the next-generation lithium-ion batteries due to their relatively high theoretical capacity and lower volume change compared to silicon (Si). Nevertheless, traditional binder poly(vinylidene difluoride) (PVDF) still cannot hold the integrity of the SiOx particle due to its weak van der Waals force. Herein, a copolymer binder for SiOx microparticles is synthesized through a facile method of free radical polymerization between acrylamide (AM) and acrylic acid (AA). By adjusting the mass ratio of the AM/AA monomer, the copolymer binder can generate a covalent-noncovalent network with superior elastic properties from the synergistic effect. During electrochemical testing, the SiOx anode with the optimal copolymer binder (AM/AA = 3:1) delivered a reversible capacity of 734 mAh g-1 (two times that of commercial graphite) at 0.5C after 300 cycles. Thus, this work developed a green and effective strategy for synthesizing a water-soluble binder for Si-based anodes.
Collapse
Affiliation(s)
- Zheng Weng
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Shenghan Di
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Long Chen
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Gang Wu
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory and School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Ning Zhang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory and School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| |
Collapse
|