1
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Biomimetic materials for efficient emulsion separation: Based on the perspective of energy. Adv Colloid Interface Sci 2025; 341:103486. [PMID: 40163905 DOI: 10.1016/j.cis.2025.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Purifying emulsified oily wastewater is particularly crucial for solving environmental pollution and water scarcity. Membrane separation shows great potential for emulsified wastewater treatment. However, realizing continued effective emulsion separation remains a significant challenge. Fortunately, various kinds of creative schemes have been proposed to overcome the current dilemma. In this paper, biomimetic emulsion separation materials with unique wettability are introduced. Besides, This article summarizes the recently advanced emulsion separation strategies. First, we analyze the typical wettability theory and explore the trade-off between separation flux and efficiency. After that, based on emulsion types, the current common emulsion separation materials are summarized and analyzed. Notably, the integration of natural biological inspiration has made separation materials full of potential. Further, from the perspective of external energy input or no-external energy input, this article provides an overview of advanced emulsion separation materials and analyzes the potential separation mechanism. Encouragingly, efficient emulsion separation can be realized by membrane characteristics (microstructure, superwettability, electrostatic interaction) or the appropriate external stimulus (photo, electricity, magnetic). Finally, the challenges and trends are summarized. We hope that this article will provide inspiration for the advancement of novel generations of separation materials.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
2
|
Rehman A, Sohail M, Baig N, Yuan K, Abdala A, Wahab MA. Next-generation stimuli-responsive smart membranes: Developments in oil/water separation. Adv Colloid Interface Sci 2025; 341:103487. [PMID: 40174372 DOI: 10.1016/j.cis.2025.103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Effective treatment of oil-contaminated wastewater is essential due to its severe environmental and health impacts. The membrane-based separation is cost-effective, energy-efficient, and eco-friendly; however, fouling has remained a pressing issue. Stimuli-responsive membranes, which adjust their pore structure and surface properties in response to external triggers such as light, pH, and temperature, offer enhanced fouling resistance and improved separation performance. This review provides a comprehensive analysis of stimuli-responsive membranes for oil/water separation, emphasizing the role of smart polymeric materials engineered for controllable separation processes. We critically assess the strengths of these advanced membranes, including their tuneable wettability and energy-efficient operation, while identifying key limitations such as long-term stability, response time, scalability, and cost-effectiveness. Furthermore, the review explores various polymer types, synthesis methods, and fabrication techniques, evaluating their effectiveness in separation applications. Finally, the review concludes by outlining the challenges and proposing future directions to enhance the performance of stimuli-responsive membranes. By offering valuable insights into the dynamic control of membrane structures and properties, this study aims to inspire the development of next-generation stimuli-responsive membranes, drive their commercialization, and promote sustainable water treatment solutions.
Collapse
Affiliation(s)
- Aamal Rehman
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Nadeem Baig
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Kai Yuan
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, P.O. Box 23874, Qatar.
| | - Md A Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical, and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| |
Collapse
|
3
|
Xia B, Yuan Y, Jiang Y, Jiang G, Wang W, Lv X, Zou Y, Fu W, Zhang X. Research Progress on Oil-Water Separation Materials Based on Polyurethane Modification. ACS OMEGA 2025; 10:16-25. [PMID: 39829529 PMCID: PMC11740375 DOI: 10.1021/acsomega.4c06707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Numerous oil-water mixtures produced through industrial production processes and daily activities pollute the ecological environment and pose risks to human health. The development of materials with high oil-water mixture separation efficiency can promote the recycling of oil and water resources and effectively prevent environmental pollution caused by their direct discharge. Most of the current oil-water separation materials consist of foam, aerogel, and other porous materials. Among these materials, polyurethane exhibits good biodegradability, mechanical properties, large pore volume, low cost, wear resistance, and water resistance in oil-water mixture separation applications. However, pure polyurethane foam is characterized by low adsorption separation efficiency, insufficient recyclability, and high flammability. Therefore, modifying polyurethane to improve the oil-water mixture separation efficiency is vital. In this review, the methods and mechanisms of polyurethane modified materials used for oil-water mixture separation are reviewed, and their future research and application directions are prospected.
Collapse
Affiliation(s)
- Bin Xia
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, P. R. China
| | - Yuan Yuan
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, P. R. China
| | - Yan Jiang
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, P. R. China
| | - Guangming Jiang
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, P. R. China
| | - Weilu Wang
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, P. R. China
| | - Xiaoshu Lv
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, P. R. China
| | - Yan Zou
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, P. R. China
| | - Wenyang Fu
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, P. R. China
| | - Xianming Zhang
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, P. R. China
| |
Collapse
|
4
|
Li Y, Jia M, Shi B, Wang S, Luan X, Hao Z, Wang Y. Robust and flexible polyester fiber membrane with under-liquid dual superlyophobicity for efficient on-demand oil-water separation. Int J Biol Macromol 2024; 262:130138. [PMID: 38354930 DOI: 10.1016/j.ijbiomac.2024.130138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Functional materials with under-liquid dual superlyophobicity have generated a great deal of concern from researchers due to their switchable separation ability oil-water mixtures and emulsions. Conceptually, under-liquid dual superlyophobicity is a Cassie state achievable under-liquid through the synergy of an under-liquid double lyophobic surface and the construction of a highly rough surface. However, obtaining an under-liquid dual superlyophobic surface remains difficult due to its thermodynamic contradiction and complex surface composition. Herein, we successfully prepared a functional coating by modifying the mixture of cellulose nanocrystals (CNCs) and nano-TiO2 with perfluorooctanoic acid (PFOA) via a simple method, then obtained a polyester fiber membrane with under-liquid dual superlyophobicity by roll coating method. The surface wettability of the polyester (PET) membrane was altered, transforming it from the original under-water oleophobic/under-oil superhydrophilic state to the under-water superoleophobic/under-oil superhydrophobic state after coated. The resulting membrane was applied to separate oil and water on-demand. The coated PET membrane exhibited high separation efficiency (>99 %) and high separation flux, effectively separating immiscible oil-water systems as well as oil-in-water and water-in-oil emulsions. The coated PET membrane also demonstrated the ability to perform alternate separation of oil-water mixtures through wetting, washing, and rewetting cycles, with repeated processes up to 10 times without significant reduction in separation efficiency. Furthermore, compared with the previous works, our approach offers a simpler and more convenient method for constructing under-liquid dual superlyophobic surface, making it more suitable for continuous corporate production. This study may provide inspiration for the production and application in large-scale of under-liquid dual superlyophobic membranes.
Collapse
Affiliation(s)
- Yulei Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mengke Jia
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Baoying Shi
- Tianjin Tianshi College, Tianjin 301700, China.
| | - Songlin Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; Qingdao University of Science & Technology, Qingdao 266061, China
| | - Xiayu Luan
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhanhua Hao
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yufeng Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|