1
|
Huang T, Xiong W, Liao F, Wei G, Yin Z, Fan H. A novel overtone peak self-referencing fluorescent sensor based on a bipyridine-linked covalent organic framework for highly sensitive copper ion detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1362-1370. [PMID: 39835939 DOI: 10.1039/d4ay01738b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu2+, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu2+ and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu2+. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu2+, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor. The detection limit for Cu2+ is 0.1 μM, with the dual-emission system and the strong affinity of the bipyridine units for Cu2+, further improving the sensor's sensitivity and selectivity. Additionally, the sensor demonstrated excellent recovery rates in real water samples, confirming its practical applicability in environmental monitoring.
Collapse
Affiliation(s)
- Tongfu Huang
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Wei Xiong
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Fusheng Liao
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Guobing Wei
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Zhaojiang Yin
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, China
| | - Hao Fan
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| |
Collapse
|
2
|
Mandal S, Biswakarma D, Bhattacharyya AJ. Operando spectroscopy investigations of the redox reactions in heme and heme-proteins. Phys Chem Chem Phys 2024; 26:27131-27140. [PMID: 39431750 DOI: 10.1039/d4cp03341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Operando spectroscopic investigations during molecular redox processes provide unique insights into complex molecular structures and their transformations. Herein, a combination of a potentiodynamic method with spectroscopy has been employed to holistically investigate the structural transformations during Fe-redox (Fe3+ ↔ Fe2+) of hemin vis á vis heme-proteins, e.g. myoglobin (Mb), hemoglobin (Hb) and cytochrome-C (Cyt-C). The UV-vis findings reveal the formation of hemozoin (≈heme-dimer), which can be selectively prevented via a high concentration of strongly interacting ligands, e.g. histidine (the fifth coordinating ligand in the heme-based protein). On the other hand, methionine does not prevent the formation of hemozoin. In Mb, Hb, and Cyt-C, as the fifth coordination site is occupied by histidine, hemozoin formation is inhibited. During Fe3+→ Fe2+, operando circular dichroism exhibits a decrease in the initial helical component in Hb from nearly 40% to 28%, which is close to the initial helix component of Mb (≈25%), strongly indicating denaturation of the protein in the redox pathway. The rate of change of the helices versus potential is almost identical for Mb and Hb, but comparatively faster than Cyt-C. In addition, from the Raman bands of M-N dynamics and protein agglomeration, it is concluded that Cyt-C prefers to agglomerate in the 2+ state, whereas Mb/Hb in the 3+ state. In this report, the power of operando spectroscopy is utilized to unearth the dynamics of hemin and heme-based proteins for comprehending the underlying complexities associated with the molecular redox, which have deep implications in electrocatalysis, energy storage, and sensing.
Collapse
Affiliation(s)
- Subhankar Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Dipen Biswakarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Aninda J Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
- Interdisciplinary Center for Energy Research, Indian Institute of Science, Bengaluru: 560012, Karnataka, India.
| |
Collapse
|
3
|
Wang B, Liu J, Mao C, Wang F, Yuan S, Wang X, Hu Z. A MOF-Gel Based Separator for Suppressing Redox Mediator Shuttling in Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401231. [PMID: 38860742 DOI: 10.1002/smll.202401231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Redox mediators (RMs) are widely utilized in the electrolytes of Li-O2 batteries to catalyze the formation/decomposition of Li2O2, which significantly enhances the cycling performance and reduces the charge overpotential. However, RMs have a shuttle effect by migrating to the Li anode side and inducing Li metal degradation through a parasitic reaction. Herein, a metal-organic framework gel (MOF-gel) separator is proposed to restrain the shuttling of RMs. Compared to traditional MOF nanoparticles, MOF gels form uniform and dense films on the separators. When using Ru(acac)3 (ruthenium acetylacetonate) as an RM, the MOF-gel separator suppresses the shuttling of Ru(acac)3 toward the Li anode side and significantly enhances the performance of Li-O2 batteries. Specifically, Li-O2 batteries exhibit an ultralong cycling life (410 cycles) at a current density of 0.5 A g-1. Moreover, the batteries using the MOF-gel/celgard separator exhibit significantly improved cycling performance (increase by ≈1.6 times) at a high current density of 1.0 A g-1 and a decreased charge/discharge overpotential. This result is expected to guide future development of battery separators and the exploration of redox mediators.
Collapse
Affiliation(s)
- Baoxing Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- School of Resource & Environment and Safety Engineering, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Jiaheng Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Fang Wang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, 272000, P. R. China
| | - Shuai Yuan
- Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Lew-Yee JFH, Bonfil-Rivera IA, Piris M, M. del Campo J. Excited States by Coupling Piris Natural Orbital Functionals with the Extended Random-Phase Approximation. J Chem Theory Comput 2024; 20:2140-2151. [PMID: 38353418 PMCID: PMC10938499 DOI: 10.1021/acs.jctc.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
In this work, we explore the use of Piris natural orbital functionals (PNOFs) to calculate excited-state energies by coupling their reconstructed second-order reduced density matrix with the extended random-phase approximation (ERPA). We have named the general method PNOF-ERPA, and specific approaches are referred to as PNOF-ERPA0, PNOF-ERPA1, and PNOF-ERPA2, according to the way the excitation operator is built. The implementation has been tested in the first excited states of H2, HeH+, LiH, Li2, and N2 showing good results compared to the configuration interaction (CI) method. As expected, an increase in accuracy is observed on going from ERPA0 to ERPA1 and ERPA2. We also studied the effect of electron correlation included by PNOF5, PNOF7, and the recently proposed global NOF (GNOF) on the predicted excited states. PNOF5 appears to be good and may even provide better results in very small systems, but including more electron correlation becomes important as the system size increases, where GNOF achieves better results. Overall, the extension of PNOF to excited states has been successful, making it a promising method for further applications.
Collapse
Affiliation(s)
- Juan Felipe Huan Lew-Yee
- Departamento
de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México City C.P.
04510, Mexico
- Donostia
International Physics Center (DIPC), 20018 Donostia, Spain
| | - Iván Alejandro Bonfil-Rivera
- Departamento
de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México City C.P.
04510, Mexico
| | - Mario Piris
- Donostia
International Physics Center (DIPC), 20018 Donostia, Spain
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea
(UPV/EHU), 20018 Donostia, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jorge M. del Campo
- Departamento
de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México City C.P.
04510, Mexico
| |
Collapse
|
5
|
Jayan R, Islam MM. Understanding Catalytic Mechanisms and Cathode Interface Kinetics in Nonaqueous Mg-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45895-45904. [PMID: 37733269 DOI: 10.1021/acsami.3c09599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
We leverage first-principles density functional theory (DFT) calculations to understand the electrocatalytic processes in Mg-CO2 batteries, considering ruthenium oxide (RuO2) as an archetypical cathode catalyst. Our goal is to establish a mechanistic framework for understanding the charging and discharging reaction pathways and their influence on overpotentials. On the RuO2 (211) surface, we found reaction initiation through thermodynamically favorable adsorption of Mg followed by interactions with CO2. However, we found that the formation of carbonate (CO32-) and oxalate (C2O42-) intermediates via the activation of CO2 at the catalytic site is thermodynamically unfavorable. We predict that MgC2O4 will form as the discharge product due to its lower overpotential compared to MgCO3. However, MgC2O4 is thermodynamically unstable and is expected to decompose into MgCO3, MgO, and C as final discharge products. Through Bader charge analysis, we investigate the covalent interactions between intermediates and catalyst sites. Moreover, we study the electrochemical free energy profiles of the most favorable reaction pathways and determine discharge and charge overpotentials of 1.30 and 1.35 V, respectively. Our results underscore the importance of catalyst design for the cathode material to overcome performance limitations in nonaqueous Mg-CO2 batteries.
Collapse
Affiliation(s)
- Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
6
|
Cheng Y, Dou Y, Zhang X, Song Y, Liu S, Wang Y, Zhang H, Chen X, Qiu J, Wei Y. Oxygen Radical Anion Substituted Iron Phthalocyanine as an Effective Redox Mediator for Li-O 2 Batteries. J Phys Chem Lett 2023:6749-6756. [PMID: 37471689 DOI: 10.1021/acs.jpclett.3c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Transition metal phthalocyanines are potential soluble redox mediators for Li-O2 batteries. In this work, effective strategies to control the redox potentials and activities of iron phthalocyanine (FePc) based redox mediators are designed by the introduction of electron-withdrawing or electron-donating groups. Substituted electron-donating groups can shift the oxidation potential of FePc to a higher energy level, consequently reducing the charging voltage of Li-O2 batteries. Especially, oxygen radical anion (-O-) modified FePc (FePc-O-) shows the most significant improvement to the oxygen reduction and evolution reactions of Li-O2 batteries. Electronic analysis indicates that -O- substitution can break the symmetry of electronic structures of FePc which further tunes the reduction of O2 and the oxidation of Li2O2. Detailed reaction mechanisms of (FePc-O-)-mediated Li-O2 batteries are proposed based on first-principles molecular dynamics simulations and thermodynamic free energy calculations.
Collapse
Affiliation(s)
- Yingjie Cheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yaying Dou
- Engineering Research Center of Advanced Functional Material Manufacturing (Ministry of Education), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoya Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yuan Song
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Siyu Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Hao Zhang
- Research Institute of Chemical Defence, Beijing 100191, China
| | - Xibang Chen
- Research Institute of Chemical Defence, Beijing 100191, China
| | - Jingyi Qiu
- Research Institute of Chemical Defence, Beijing 100191, China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Sun X, Mu X, Zheng W, Wang L, Yang S, Sheng C, Pan H, Li W, Li CH, He P, Zhou H. Binuclear Cu complex catalysis enabling Li-CO 2 battery with a high discharge voltage above 3.0 V. Nat Commun 2023; 14:536. [PMID: 36725869 PMCID: PMC9892515 DOI: 10.1038/s41467-023-36276-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Li-CO2 batteries possess exceptional advantages in using greenhouse gases to provide electrical energy. However, these batteries following Li2CO3-product route usually deliver low output voltage (<2.5 V) and energy efficiency. Besides, Li2CO3-related parasitic reactions can further degrade battery performance. Herein, we introduce a soluble binuclear copper(I) complex as the liquid catalyst to achieve Li2C2O4 products in Li-CO2 batteries. The Li-CO2 battery using the copper(I) complex exhibits a high electromotive voltage up to 3.38 V, an increased output voltage of 3.04 V, and an enlarged discharge capacity of 5846 mAh g-1. And it shows robust cyclability over 400 cycles with additional help of Ru catalyst. We reveal that the copper(I) complex can easily capture CO2 to form a bridged Cu(II)-oxalate adduct. Subsequently reduction of the adduct occurs during discharge. This work innovatively increases the output voltage of Li-CO2 batteries to higher than 3.0 V, paving a promising avenue for the design and regulation of CO2 conversion reactions.
Collapse
Affiliation(s)
- Xinyi Sun
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Xiaowei Mu
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Wei Zheng
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Lei Wang
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Sixie Yang
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Chuanchao Sheng
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Hui Pan
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Wei Li
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Cheng-Hui Li
- grid.41156.370000 0001 2314 964XState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Ping He
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| | - Haoshen Zhou
- grid.41156.370000 0001 2314 964XCenter of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, P. R. China
| |
Collapse
|