1
|
Song K, Li G, Yu J, Zheng T, Wang J. Bamboo-like nitrogen-doped carbon nanotubes directly grown from commercial carbon black for encapsulating FeCo nanoparticles as efficient oxygen reduction electrocatalysts. J Colloid Interface Sci 2025; 679:364-372. [PMID: 39461125 DOI: 10.1016/j.jcis.2024.10.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Efficient methods for preparing carbon nanotube (CNT)-confined metal catalysts are of great significance for electrocatalysis. Hence, in this study, Fe and Co promoters were added to the precursors of commercial carbon black and melamine to form N-doped CNTs confined bimetallic catalysts (FeCo@N-CNTs) via in situ pyrolysis. The FeCo@N-CNT catalysts exhibited a bamboo-like morphology with FeCo alloy nanoparticles encapsulated in the CNTs and high activity toward the oxygen reduction reaction, with a half-wave potential of 0.864 mV, higher than that of commercial Pt/C (0.827 mV) in alkaline solutions. The catalytic performance is attributable to the synergistic effects between the FeCo alloy and N-doped CNT structure. Moreover, the confinement of the FeCo nanoparticles inside the CNTs imparted the prepared catalysts with resistance to methanol poisoning and long-term stability. This versatile method of synthesizing CNTs directly from carbon black provides a new strategy for preparing high-performance non-precious-metal-based N-doped CNT catalysts for practical fuel cell applications.
Collapse
Affiliation(s)
- Kunpeng Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, 1 Shida Road, Nanchong 637009, China
| | - Guanghui Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Junchen Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Tianyue Zheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Rd, Ningbo 315201, China.
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
2
|
Zhao S, Ma Z, Wan Z, Li J, Wang X. Noble-Metal-Free FeMn-N-C Catalyst for Efficient Oxygen Reduction Reaction in Both Alkaline and Acidic Media. J Colloid Interface Sci 2023; 642:800-809. [PMID: 37043938 DOI: 10.1016/j.jcis.2023.03.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
The oxygen reduction reaction (ORR) is important cathodic reaction running in several electrochemical energy conversion devices. It is still difficult to develop non-precious nanocatalysts for ORR that have high activity and increased durability for practical application. Herein, bimetallic FeMn(mIm)-N-C composite incorporated with Fe and Mn via an encapsulation-ligand exchange technique is prepared and established as an efficient ORR catalyst. The results reveal that FeMn(mIm)-N-C shows outstanding ORR performance with E1/2 of 0.861 V and 0.778 V in alkaline and acid solutions, along with robust durability. Additionally, the assembled Zn-Air batteries (ZAB) and proton exchange membrane fuel cells (PEMFCs) both have exceptional power densities and show promise for long-term stability compared to 20% Pt/C. The present work provides a useful strategy for designing and synthesizing a reliable low-cost and high-efficient electrocatalysts for energy conversion and storage.
Collapse
|