1
|
Xu Z, Du J, Jin X, Tao Y, Lu J, Hu J, Lv Y, Xia X, Wang H. In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation. Carbohydr Polym 2025; 351:123091. [PMID: 39779008 DOI: 10.1016/j.carbpol.2024.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment. Kinetic tests showed CZT-Cur-SA films released 65.68 % of Cur at pH 6.0 within 24 h, compared to 28.26 % at pH 7.0. These films demonstrated exhibited excellent mechanical properties, antioxidation capacity (82.59 %), reinforced moisture (0.51 × 10-10 g m-1 s-1 Pa-1) and satisfied antimicrobial effects on E. coli (1.69 %) and S. aureus (0.88 %). The optimized CZT-Cur-SA film extended strawberry shelf life to at least 7 days under ambient conditions. Our findings introduce a promising approach to designing responsive, biodegradable active packaging for enhanced food safety.
Collapse
Affiliation(s)
- Zhihang Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xingming Jin
- Beijing Shieldry Technology Co., Ltd, Beijing 100010, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinwen Hu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Chen D, Chen Y, Zhu Z, Luo F, Wu F, Zhou Q, Guo C. Smart Window with Reversible and Instantaneous Photoluminescence based on Microsphere Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52958-52965. [PMID: 39303103 DOI: 10.1021/acsami.4c12254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A smart window that dynamically regulates light transmittance is crucial for modern life end-users and promising for on-demand optical devices. The advent of three-dimensional (3D) photonic crystal microspheres has enriched the functions of a smart window. However, the smart window formed by polymer microspheres encounters poor mechanical strength and microstructural defects. Herein, to solve this limitation, we report the microsphere-based smart window composed of tightly packed cross-linked polymer microspheres (as a precursor) containing organic photochromic dyes, followed by compression under a high elastic state. When excited under an ultraviolet supply, our smart window showed a rapid and reversible fluorescent photoluminescence without fatigue (50 cycles). Moreover, the bulk devices with a microsphere cross-linked network structure enable excellent mechanical strength (hardness reached 0.158 GPa) and visible-light transparency. Interestingly, a QR code can be recognized under visible light exposure but not under ultraviolet light exposure because of photoluminescence of the smart window. Our method generally provided a paradigm for various amorphous polymers, which can be regarded as a simple and effective approach to build a versatile strategy to introduce an ideal marketplace with economic and community benefits.
Collapse
Affiliation(s)
- Dan Chen
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelec-tronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, Hunan, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changshav 410073, Hunan, China
| | - Yuang Chen
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelec-tronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, Hunan, China
| | - Zhihong Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelec-tronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, Hunan, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changshav 410073, Hunan, China
| | - Fang Luo
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelec-tronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, Hunan, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changshav 410073, Hunan, China
| | - Fan Wu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelec-tronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, Hunan, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changshav 410073, Hunan, China
| | - Qingwei Zhou
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelec-tronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, Hunan, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changshav 410073, Hunan, China
| | - Chucai Guo
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelec-tronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, Hunan, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changshav 410073, Hunan, China
| |
Collapse
|
3
|
Lin Y, Wang C, Wu J, Tang J, Ye G, Zhao X, Li H, He Y. Imaging the Iodine Sorption-Induced Synchronous Skeleton-Pore Interactions of Single Covalent Organic Framework Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401167. [PMID: 38528426 DOI: 10.1002/smll.202401167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Covalent organic frameworks (COFs) are promising iodine adsorbents. For improved performances, it is critical and essential to fundamentally understand the underlying mechanism. Here, using the operando dark-field optical microscopy (DFM) imaging technique, the observation of an extraordinary structure shrinkage of 2D triphenylbenzene (TPB)-dimethoxyterephthaldehyde (DMTP)-COF upon the adsorption of I2 vapor at the single-particle resolution is reported. Combining single-particle DFM imaging with other experimental and theoretical methods, it is revealed that the shrinkage mechanism of the TPB-DMTP-COF is attributed to the I2 sorption-induced synchronous skeleton-pore interactions. The redox reaction of I2 and TPB-DMTP-COF yields some cationic skeletons and I3 - species, which triggers the multi-directional halogen-bonding interactions of I2 and I3 - as well as strong cation-π interactions between neutral and cationic skeletons, accompanying the synchronous in-plane skeleton shrinking in the xy plane and compact out-of-plane layer packing in the z-direction. This understanding of the synchronous action between the skeleton and pore breaks the perspective on the structure robustness of 2D COFs with excellent stability during the I2 uptake, which offers pivotal guidance for the rational design and creation of advanced microporous adsorbents.
Collapse
Affiliation(s)
- Ying Lin
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Changjiang Wang
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Jinxiang Wu
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Jian Tang
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Guangmao Ye
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Xiaobing Zhao
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yi He
- School of Nuclear Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| |
Collapse
|
4
|
Chi H, Liu Y, Li Z, Chen W, He Y. Direct visual observation of pedal motion-dependent flexibility of single covalent organic frameworks. Nat Commun 2023; 14:5061. [PMID: 37604822 PMCID: PMC10442449 DOI: 10.1038/s41467-023-40831-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Flexible covalent organic frameworks (COFs) have been studied for applications containing sorption, selective separation, and catalysis. How to correlate the microscopic structure with flexibility in COFs is a great challenge. Herein, we visually track the flexible deformation behaviors of single COF-300 and COF-300-AR particles in response to solvent vapour guests with dark-field microscopy (DFM) in an in operando manner. COF-300-AR with freely-rotating C-N single bonds are synthesized by the reduction of imine-based COF-300 consisting of rigid C=N double bonds without changing topological structure and crystallinity. Unexpectedly, we observe that the flexible deformation of COF-300 is extremely higher than that of COF-300-AR despite it bears many C-N single bonds, clearly illustrating the apparent flexibility decrease of COF-300 after reduction. The high spatiotemporal resolution of DFM enables the finding of inter-particle variations of the flexibility among COF-300 crystals. Experimental characterizations by variable-temperature X-ray diffraction and infrared spectroscopy as well as theoretical calculations demonstrate that the flexible deformation of COF-300 is ascribed to the pedal motion around rigid C=N double bonds. These observations provide new insights into COF flexibility.
Collapse
Affiliation(s)
- Hongbin Chi
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China
| | - Yang Liu
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China
- Sichuan College of Architectural Technology, 618000, Deyang, Sichuan, P. R. China
| | - Ziyi Li
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China
| | - Wanxin Chen
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China
| | - Yi He
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China.
| |
Collapse
|