1
|
Jiang W, Seidi F, Liu Y, Li C, Huang Y, Xiao H. Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites. Adv Colloid Interface Sci 2024; 335:103332. [PMID: 39536515 DOI: 10.1016/j.cis.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The emergence of smart textiles with the ability to regulate body temperature, monitor human motion, exhibit antibacterial properties, sound fire alarms, and offer fire resistance has sparked considerable interest in recently. MXene displays remarkable attributes like high metallic conductivity, electromagnetic shielding capability, and photothermal/electrothermal properties. Furthermore, due to the highly polar surface groups, MXene nanosheets show exceptional hydrophilic properties and are able to establish strong connections with the polar surfaces of natural fabrics. This review focuses on the most recent developments in altering the surface of cellulosic textiles with MXene and MXene-based composites. The combination of MXene with other modifier agents, such as phosphorous compounds, graphene, carbon nanotube, conductive polymers, antibacterial macromolecules, superhydrophobic polymers, and metal or metal oxide nanoparticles, imparts diverse functionalities to textiles, such as self-cleaning and fire resistance. Moreover, the synergistic effects between these modifier agents with MXenes can improve MXene-related properties like antibacterial, photothermal, electrothermal, and motion- and fire-sensing characteristics.
Collapse
Affiliation(s)
- Wensi Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
2
|
Repon MR, Mikučionienė D, Paul TK, Al-Humaidi JY, Rahman MM, Islam T, Shukhratov S. Architectural design and affecting factors of MXene-based textronics for real-world application. RSC Adv 2024; 14:16093-16116. [PMID: 38769956 PMCID: PMC11103351 DOI: 10.1039/d4ra01820f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Today, textile-based wearable electronic devices (textronics) have been developed by taking advantage of nanotechnology and textile substrates. Textile substrates offer flexibility, air permeability, breathability, and wearability, whereas, using nanomaterials offers numerous functional properties, like electrical conductivity, hydrophobicity, touch sensitivity, self-healing properties, joule heating properties, and many more. For these reasons, textronics have been extensively used in many applications. Recently, new emerging two-dimensional (2D) transition metal carbide and nitride, known as MXene, nanomaterials have been highly considered for developing textronics because the surface functional groups and hydrophilicity of MXene nanoflakes allow the facile fabrication of MXene-based textronics. In addition, MXene nanosheets possess excellent electroconductivity and mechanical properties as well as large surface area, which also give numerous opportunities to develop novel functional MXene/textile-based wearable electronic devices. Therefore, this review summarizes the recent advancements in the architectural design of MXene-based textronics, like fiber, yarn, and fabric. Regarding the fabrication of MXene/textile composites, numerous factors affect the functional properties (e.g. fabric structure, MXene size, etc.). All the crucial affecting parameters, which should be chosen carefully during the fabrication process, are critically discussed here. Next, the recent applications of MXene-based textronics in supercapacitors, thermotherapy, and sensors are elaborately delineated. Finally, the existing challenges and future scopes associated with the development of MXene-based textronics are presented.
Collapse
Affiliation(s)
- Md Reazuddin Repon
- Department of Textile Engineering, Daffodil International University Dhaka-1216 Bangladesh +88-37066227098
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | - Daiva Mikučionienė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | | | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials Sherpur-2100 Bangladesh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Sharof Shukhratov
- Department of Technological Education, Fergana State University Fergana 150100 Uzbekistan
| |
Collapse
|
3
|
Wang J, Cheng L, Ye F, Zhao K. Amorphous/Nanocrystalline, Lightweight, Wave-Transparent Boron Nitride Nanobelt Aerogel for Thermal Insulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47405-47414. [PMID: 37769167 DOI: 10.1021/acsami.3c09996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
At present, the new generation of aircraft is developing in the direction of high speed, long endurance, high mobility, and repeatability. Some studies have shown that the surface temperature of the radome can reach even 1800 °C as the flight speed of the aircraft increases. However, the antenna inside the radome cannot serve at this temperature. Consequently, a thermal insulation system with electromagnetic wave-transparent ability and high-temperature resistance is urgently needed to protect the antenna from working normally. An aerogel material is known as "solid smoke," with the lowest density currently. Because of its high porosity (>90%) and the characteristics of nanopore size, its application in the field of thermal insulation always draws the attention of researchers. In this work, a novel amorphous/nanocrystalline boron nitride (BN) nanobelt aerogel was synthesized successfully. The BN aerogel shows lightweight (18 mg/cm3), good thermal stability (1400 °C under an inert atmosphere and 750 °C under an air atmosphere), wideband wave-transparent performance (dielectric constant of 1.03 and dielectric loss of 0.016 at 4-18 GHz), and thermal insulation property (43 mW/(m·K) at room temperature and 73 mW/(m·K) at 600 °C). The BN aerogel is a suitable candidate as an electromagnetic wave-transparent thermal insulator and fire-resistant material. What is more, the structural stability of the BN aerogel is good (Young's modulus remains basically constant during the fatigue tests), and the energy loss coefficient (∼0.56) is high; it also has the potential to be a mechanical energy dissipative material. The study on the amorphous/nanocrystalline BN nanobelt aerogel provides a new idea for structure design and performance optimization of a high-temperature electromagnetic functional insulation material.
Collapse
Affiliation(s)
- Junheng Wang
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fang Ye
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Zhao
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Kumbhakar P, Ambekar RS, Parui A, Roy AK, Roy D, Singh AK, Tiwary CS. Energy Harvesting Using ZnO Nanosheet-Decorated 3D-Printed Fabrics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44513-44520. [PMID: 37697828 DOI: 10.1021/acsami.3c08374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
In this work, we decorated piezoresponsive atomically thin ZnO nanosheets on a polymer surface using additive manufacturing (three-dimensional (3D) printing) technology to demonstrate electrical-mechanical coupling phenomena. The output voltage response of the 3D-printed architecture was regulated by varying the external mechanical pressures. Additionally, we have shown energy generation by placing the 3D-printed fabric on the padded shoulder strap of a bag with a load ranging from ∼5 to ∼75 N, taking advantage of the excellent mechanical strength and flexibility of the coated 3D-printed architecture. The ZnO coating layer forms a stable interface between ZnO nanosheets and the fabric, as confirmed by combining density functional theory (DFT) and electrical measurements. This effectively improves the output performance of the 3D-printed fabric by enhancing the charge transfer at the interface. Therefore, the present work can be used to build a new infrastructure for next-generation energy harvesters capable of carrying out several structural and functional responsibilities.
Collapse
Affiliation(s)
- Partha Kumbhakar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
- Department of Physics and Electronics, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Rushikesh S Ambekar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Arko Parui
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Ajit K Roy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433-7718, United States
| | - Debmalya Roy
- Directorate of Nanomaterials, DMSRDE, GT Road, Kanpur 208013, Uttar Pradesh, India
| | - Abhishek K Singh
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Chandra S Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
5
|
Permyakova ES, Tregubenko MV, Antipina LY, Kovalskii AM, Matveev AT, Konopatsky AS, Manakhov AM, Slukin PV, Ignatov SG, Shtansky DV. Antibacterial, UV-Protective, Hydrophobic, Washable, and Heat-Resistant BN-Based Nanoparticle-Coated Textile Fabrics: Experimental and Theoretical Insight. ACS APPLIED BIO MATERIALS 2022; 5:5595-5607. [PMID: 36479940 DOI: 10.1021/acsabm.2c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of nanoparticles (NPs) to modify the surface of cotton fabric is a promising approach to endowing the material with a set of desirable characteristics that can significantly expand the functionality, wear comfort, and service life of textile products. Herein, two approaches to modifying the surface of hexagonal boron nitride (h-BN) NPs with a hollow core and a smooth surface by treatment with maleic anhydride (MA) and diethylene triamine (DETA) were studied. The DETA and MA absorption on the surface of h-BN and the interaction of surface-modified h-NPs with cellulose as the main component of cotton were modeled using density functional theory with the extended Perdew-Burke-Ernzerhof functional. Theoretical modeling showed that the use of DETA as a binder agent can increase the adhesion strength of BN NPs to textile fabric due to the simultaneous hydrogen bonds with cellulose and BN. Due to the difference in zeta potentials (-38.4 vs -25.8 eV), MA-modified h-BN NPs form a stable suspension, while DETA-modified BN NPs tend to agglomerate. Cotton fabric coated with surface-modified NPs exhibits an excellent wash resistance and high hydrophobicity with a water contact angle of 135° (BN-MA) and 146° (BN-DETA). Compared to the original textile material, treatment with MA- and DETA-modified h-BN NPs increases heat resistance by 10% (BN-MA fabric) and 15% (BN-DETA fabric). Cotton fabrics coated with DETA- and MA-modified BN NPs show enhanced antibacterial activity against Escherichia coli U20 and Staphylococcus aureus strains and completely prevent the formation of an E. coli biofilm. The obtained results are important for the further development of fabrics for sports and medical clothing as well as wound dressings.
Collapse
Affiliation(s)
| | - Marya V Tregubenko
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Liubov Yu Antipina
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Andrey M Kovalskii
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Andrei T Matveev
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Anton S Konopatsky
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Anton M Manakhov
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk142279, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk142279, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow119049, Russia
| |
Collapse
|