1
|
Dun L, Ouyang Z, Sun Q, Yue X, Wu G, Li B, Kang W, Wang Y. A Simple and Efficient Magnesium Hydroxide Modification Strategy for Flame-Retardancy Epoxy Resin. Polymers (Basel) 2024; 16:1471. [PMID: 38891418 PMCID: PMC11174588 DOI: 10.3390/polym16111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium hydroxide, as a green inorganic flame-retardancy additive, has been widely used in polymer flame retardancy. However, magnesium hydroxide is difficult to disperse with epoxy resin (EP), and its flame-retardancy performance is poor, so it is difficult to use in flame-retardant epoxy resin. In this study, an efficient magnesium hydroxide-based flame retardant (MH@PPAC) was prepared by surface modification of 2-(diphenyl phosphine) benzoic acid (PPAC) using a simple method. The effect of MH@PPAC on the flame-retardancy properties for epoxy resins was investigated, and the flame-retardancy mechanism was studied. The results show that 5 wt% MH@PPAC can increase the limiting oxygen index for EP from 24.1% to 38.9%, achieving a V-0 rating. At the same time, compared to EP, the peak heat release rate, peak smoke production rate, total smoke production rate, and peak CO generation rate for EP/5 wt% MH@PPAC composite material decreased by 53%, 45%, 51.85%, and 53.13% respectively. The cooperative effect for PPAC and MH promotes the formation of a continuous and dense char layer during the combustion process for the EP-blend material, significantly reducing the exchange for heat and combustible gases, and effectively hindering the combustion process. Additionally, the surface modification of PPAC enhances the dispersion of MH in the EP matrix, endowing EP with superior mechanical properties that meet practical application requirements, thereby expanding the application scope for flame-retardant EP-blend materials.
Collapse
Affiliation(s)
- Linan Dun
- College of Materials Science and Engineering, Northeastern University, Shenyang 110004, China; (L.D.); (Q.S.)
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Zeen Ouyang
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Qihao Sun
- College of Materials Science and Engineering, Northeastern University, Shenyang 110004, China; (L.D.); (Q.S.)
| | - Xiaoju Yue
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Guodong Wu
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Bohan Li
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Weidong Kang
- Jinxi Industries Group Co., Ltd., Taiyuan 030000, China;
| | - Yuanhao Wang
- College of Materials Science and Engineering, Northeastern University, Shenyang 110004, China; (L.D.); (Q.S.)
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| |
Collapse
|
2
|
Huo M, Chen J, Jin C, Huo S, Liu G, Kong Z. Preparation, characterization, and application of waterborne lignin-based epoxy resin as eco-friendly wood adhesive. Int J Biol Macromol 2024; 259:129327. [PMID: 38219939 DOI: 10.1016/j.ijbiomac.2024.129327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A series of novel waterborne lignin-based epoxy resin emulsions (WLEPs) were successfully synthesized, and then the WLEPs were cured with polyamide (PA) to give formaldehyde-free wood adhesives with high-performance. The chemical structures and properties of WLEP emulsions were determined. The effects of the emulsifiers on thermal and mechanical properties of the adhesives were investigated, and the potential application of WLEPs in the formulation of plywood were also evaluated. The results demonstrated that the WLEP dispersions presented excellent storage stability (>180 days) with their viscosities range from 110 mPa·s to 470 mPa·s and particle sizes in the range of 321-696 nm, which were beneficial for the fluidity and permeability of the wood adhesives. Furthermore, the thermal and mechanical properties of adhesives could be tuned effectively by controlling the length of PEG chains. The adhesive bearing PEG 6000 exhibited the highest tensile strength of 24.0 MPa and Young's modulus of 1439 MPa. Notably, the plywood prepared with the resulting adhesives displayed good bonding performance, especially water resistance, which were much higher than the national standard requirement for exterior-grade plywood type I. These results indicated that the WLEPs could be used as sustainable alternatives for traditional formaldehyde-based wood adhesives in practical applications.
Collapse
Affiliation(s)
- Meiyu Huo
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Jian Chen
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Shuping Huo
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| | - Guifeng Liu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China.
| | - Zhenwu Kong
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources of Jiangsu Province, Nanjing 210037, China
| |
Collapse
|
3
|
Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem Rev 2023. [PMID: 36946191 DOI: 10.1021/acs.chemrev.2c00572] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Functional phase change materials (PCMs) capable of reversibly storing and releasing tremendous thermal energy during the isothermal phase change process have recently received tremendous attention in interdisciplinary applications. The smart integration of PCMs with functional supporting materials enables multiple cutting-edge interdisciplinary applications, including optical, electrical, magnetic, acoustic, medical, mechanical, and catalytic disciplines etc. Herein, we systematically discuss thermal storage mechanism, thermal transfer mechanism, and energy conversion mechanism, and summarize the state-of-the-art advances in interdisciplinary applications of PCMs. In particular, the applications of PCMs in acoustic, mechanical, and catalytic disciplines are still in their infancy. Simultaneously, in-depth insights into the correlations between microscopic structures and thermophysical properties of composite PCMs are revealed. Finally, current challenges and future prospects are also highlighted according to the up-to-date interdisciplinary applications of PCMs. This review aims to arouse broad research interest in the interdisciplinary community and provide constructive references for exploring next generation advanced multifunctional PCMs for interdisciplinary applications, thereby facilitating their major breakthroughs in both fundamental researches and commercial applications.
Collapse
Affiliation(s)
- Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Ang Li
- School of Chemistry Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| |
Collapse
|