1
|
Wang S, Zhao G, Zeng Y, Lin H, Lin B, Pan M. Dynamically crosslinked chiral optics sensing for ultra-sensitive VOCs detection. CHEMOSPHERE 2024; 361:142530. [PMID: 38851511 DOI: 10.1016/j.chemosphere.2024.142530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Chiroptical sensing with real-time colorimetrical detection has been emerged as quantifiable properties, enantioselective responsiveness, and optical manipulation in environmental monitoring, food safety and other trace identification fields. However, the sensitivity of chiroptical sensing materials remains an immense challenge. Here, we report a dynamically crosslinking strategy to facilitate highly sensitive chiroptical sensing material. Chiral nematic cellulose nanocrystals (CNC) were co-assembled with amino acid by a two-step esterification, of which a precisely tunable helical pitch, a unique spiral conformation with hierarchical and numerous active sites in sensing performance could be trigged by dynamic covalent bond on amines. Such a CNC/amino acid chiral optics features an ultra-trace amount of 0.08 mg/m3 and a high sensitivity of 60 nm/(mg/m3) for formaldehyde gas at a molecule level detection, which is due to the three synergistic adsorption enhancement of dynamic covalent bonded interaction, hydrogen bonded interaction and van der Waals interaction. Meanwhile, an enhancement hierarchical adsorption of CNC/amino acid chiral materials can be readily representative to the precise helical pitch and colorimetrical switch for sensitive visualization reorganization.
Collapse
Affiliation(s)
- Shuaiqi Wang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Guomin Zhao
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yihan Zeng
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Haifeng Lin
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Bingqun Lin
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingzhu Pan
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Tan QW, Li D, Li LY, Wang ZL, Wang XL, Wang YZ, Song F. A Rule for Response Sensitivity of Structural-Color Photonic Colloids. NANO LETTERS 2023; 23:9841-9850. [PMID: 37737087 DOI: 10.1021/acs.nanolett.3c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
To mimic natural photonic crystals having color regulation capacities dynamically responsive to the surrounding environment, periodic assembly structures have been widely constructed with response materials. Beyond monocomponent materials with stimulus responses, binary and multiphase systems generally offer extended color space and complex functionality. Constructing a rule for predicting response sensitivity can provide great benefits for the tailored design of intelligently responsive photonic materials. Here, we elucidate mathematical relationships between the response sensitivity of dynamically structural-color changes and the location distances of photonic co-phases in three-dimensional Hansen space that can empirically express the strength of their interaction forces, including dispersion force, polarity force, and hydrogen bonding. Such an empirical rule is proven to be applicable for some typical alcohols, acetone, and acetic acid regardless of their molecular structures, as verified by angle resolution spectroscopy, in situ infrared spectroscopy, and molecular simulation. The theoretical method we demonstrate provides rational access to custom-designed responsive structural coloration.
Collapse
Affiliation(s)
- Qiang-Wu Tan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dong Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lin-Yue Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zi-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Bai H, Hu S, Zhu H, Zhang S, Wang W, Dong W. Constructing a cellulose based chiral liquid crystal film with high flexibility, water resistance, and optical property. Int J Biol Macromol 2023; 250:126132. [PMID: 37543261 DOI: 10.1016/j.ijbiomac.2023.126132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Cellulose nanocrystal (CNC) derived from cellulose can form a liquid crystal film with bright structural color by evaporative-induced self-assembly (EISA). As a new class of photonic liquid crystals material, it has attracted much attention because of its intrinsic unique structural characteristics and excellent optical properties. However, the brittleness and water sensitivity of CNC film have hindered its practical application. Herein, multiple cross-linked networks CNC/(polyethylene glycol diacrylate:polyethylene oxide) (PEGDA:PEO) composite film was prepared through EISA and UV irradiation strategies. The as-prepared film exhibits high-flexibility with a fracture strain of up to 36.40 % and strong water resistance, with water absorption at an equilibrium of only 17.41 %. Moreover, the film retains its structural color in aqueous solution for a long time due to its water stability. The outstanding flexibility and water resistance of CNC composite film are attributed to multiple crosslinked networks (i.e. PEGDA, PEO, and PEDGA-PEO networks), which endow the film with excellent stress dispersion and transferability when stretched and limit film swelling in water without affecting chiral nematic structures of CNC. Overall, this work provides a promising strategy to prepare CNC-based film with high-flexibility, water resistance, and optical property for applications like decoration, sensor, and anti-counterfeiting.
Collapse
Affiliation(s)
- Huiyu Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Shuhao Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Haiyan Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shengwen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
4
|
Deng Q, Yin K, Wang L, Zhang H, Huang Q, Luo Z, He J, Duan JA. One Droplet toward Efficient Alcohol Detection Using Femtosecond Laser Textured Micro/Nanostructured Surface with Superwettability. SMALL METHODS 2023; 7:e2300290. [PMID: 37140085 DOI: 10.1002/smtd.202300290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Alcohol with different concentrations is commonly used in food, industry, and medicine fields all over the world. However, current methods for detecting alcohol concentration are restricted to large sample consumption, additional senergy consuming, or complex operations. Here, inspired by superwettability of lotus leaves, a superhydrophobic and superorganophilic surface is designed on the polydimethylsiloxane (PDMS) for one droplet efficient alcohol detection, which is prepared via femtosecond laser direct writing technology. Meanwhile, the contact angles of droplets with various alcohol concentrations on the laser-treated PDMS (LTP) surface are different. Based on the above characteristic, alcohol concentration through contact angle measurement without any external energy is directly detected, which is simple and efficient. Furthermore, it is worth noting that the LTP surface remains stable wettability after 1000 water-ethanol cycles and 300 days tests in air, indicating strong surface repeatability and stability. Significantly, the LTP surface has a broad potential application in one droplet detecting alcohol concentration, fake or genuine wine, and alcohol molecules. This work provides a new strategy to fabricate a superwetting surface for efficient one droplet alcohol detection.
Collapse
Affiliation(s)
- Qinwen Deng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Hao Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Qiaoqiao Huang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Zhi Luo
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Ji-An Duan
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
5
|
Li Q, He C, Wang C, Huang Y, Yu J, Wang C, Li W, Zhang X, Zhang F, Qing G. Sustainable, Insoluble, and Photonic Cellulose Nanocrystal Patches for Calcium Ion Sensing in Sweat. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207932. [PMID: 37052499 DOI: 10.1002/smll.202207932] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Self-assembly of cellulose nanocrystals (CNCs) is invaluable for the development of sustainable optics and photonics. However, the functional failure of CNC-derived materials in humid or liquid environments inevitably impairs their development in biomedicine, membrane separation, environmental monitoring, and wearable devices. Here, a facile and robust method to fabricate insoluble hydrogels in a self-assembled CNC-polyvinyl alcohol (PVA) system is reported. Due to the reconstruction of inter- or intra-molecular hydrogen bond interactions, thermal dehydration makes an optimized CNC/PVA photonic film form a stable hydrogel network in an aqueous solution rather than dissolve. Notably, the resulting hydrogel exhibits superb mechanical performance (stress up to 3.3 Mpa and tough up to 0.73 MJ m-3 ) and reversible conversion between dry and wet states, enabling it convenient for specific functionalization. Sodium alginate (SA) can be adsorbed into the CNC photonic structure by swelling dry CNC/PVA film in a SA solution. The prepared hydrogel showcases the comprehensive properties of freezing resistance (-20°C), strong adhesion, satisfactory biocompatibility, and highly sensitive and selective Ca2+ sensing. The material could act as a portable wearable patch on the skin for the continuous analysis of calcium trends during different physical exercises, facilitating their development in precision nutrition and health monitoring.
Collapse
Affiliation(s)
- Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenchen He
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuxiao Huang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Jiaqi Yu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Chunbo Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xin Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Fusheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
6
|
Dong X, Wang ZL, Song F, Wang XL, Wang YZ. Construction of cellulose structural-color pigments with tunable colors and iridescence/non-iridescence. Carbohydr Polym 2023; 313:120877. [PMID: 37182967 DOI: 10.1016/j.carbpol.2023.120877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Structural colorations have been recognized as a significant way to replace conventional organic dyes for paints, inks, packaging, and cosmetics because of brilliant colors, high stability, and eco-friendliness. However, most current structural-color pigments present an iridescent appearance, and it remains difficult to mitigate a trade-off between lowering the iridescence effect and maintaining the color saturation and brightness. Here, we demonstrate a universal yet economical approach to prepare cellulose structural-color pigments with different sizes. A combined ultrasonication and grinding treatment is explored to adjust the pigment colors as well as control the iridescence-to-non-iridescence transition that depends on the pigment size. The cellulose pigments can be applied on irregular and curved surfaces, having high water-, chemical-, and mechanical-resistances. With humidity-sensing behaviors, the pigments can be further integrated into monitoring systems for environmental management. Such a preparation strategy overcomes the limitation of controlling iridescent and non-iridescent structural colors without sacrificing color properties, which may bring more opportunities to develop new eco-friendly pigments for wide applications.
Collapse
|
7
|
Li D, Wu J, Liang Z, Li L, Dong X, Chen S, Fu T, Wang X, Wang Y, Song F. Sophisticated yet Convenient Information Encryption/Decryption Based on Synergistically Time-/Temperature-Resolved Photonic Inks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206290. [PMID: 36504335 PMCID: PMC9929127 DOI: 10.1002/advs.202206290] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Exploring high-safety but convenient encryption and decryption technologies to combat threats of information leakage is urgently needed but remains a great challenge. Here, a synergistically time- and temperature-resolved information coding/decoding solution based on functional photonic inks is demonstrated. Encrypted messages can be stored into multiple channels with dynamic-color patterns, and information decryption is only enabled at appointed temperature and time points. Notably, the ink can be easily processed into quick-response codes and multipixel plates. With high transparency and responsive color variations controlled by ink compositions and ambient temperatures, advanced 3D stacking multichannel coding and Morse coding techniques can be applied for multi-information storage, complex anticounterfeiting, and information interference. This study paves an avenue for the design and development of dynamic photonic inks and complex encryption technologies for high-end anticounterfeiting applications.
Collapse
Affiliation(s)
- Dong Li
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Jia‐Min Wu
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Zheng‐Hong Liang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Lin‐Yue Li
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Xiu Dong
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Si‐Kai Chen
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Teng Fu
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Xiu‐Li Wang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Yu‐Zhong Wang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Fei Song
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| |
Collapse
|
8
|
Specific Alcohol-Responsive Photonic Crystal Sensors Based on Host-Guest Recognition. Gels 2023; 9:gels9020083. [PMID: 36826253 PMCID: PMC9957353 DOI: 10.3390/gels9020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
A photonic crystal material based on β-cyclodextrin (β-CD) with adsorption capacity is reported. The materials ((A-β-CD)-AM PC) consist of 3D poly (methyl methacrylate) (PMMA) colloidal microsphere arrays and hydrogels supplemented with β-cyclodextrin modified by acryloyl chloride. The prepared materials are then utilized for VOCs gas sensing. The 3D O-(A-β-CD)-AM PC was used to detect toluene, xylene, and acetone and the response was seen as the red-shift of the reflection peak. The 3D I-(A-β-CD)-AM PC was used to detect toluene, xylene, and acetone which occurred redshifted, while methanol, ethanol, and propanol and the peaks' red-shifting was observed. However, among these, methanol gave the largest red-shift response The sensor has broad prospects in the detection of alcohol and the detection of alcohol-loaded drug releases in the future.
Collapse
|
9
|
Zhang ZL, Dong X, Zhao YY, Song F, Wang XL, Wang YZ. Bioinspired Optical Flexible Cellulose Nanocrystal Films with Strain-Adaptive Structural Coloration. Biomacromolecules 2022; 23:4110-4117. [PMID: 36070358 DOI: 10.1021/acs.biomac.2c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances of photonic crystals are driven to mechanical sensors and smart wearable devices; however, for chiral photonic cellulose nanocrystal (CNC) materials, vivid structural coloration and reversible mechanochromism like chameleon skin remain a big challenge. Here, we report a ternary co-assembly and post-UV-irradiation polymerization strategy to develop flexible and elastic CNC composite films, which, notably, have naked-eye-visible brilliant structural colors and stretching-induced color change covering a broad wavelength region at a moderate deformation (like skin). By adjusting the stretching, the film is designed as a smart skin to adapt to surrounding environments for camouflage. This work offers a universal strategy for constructing biomimic optically functional cellulose skins.
Collapse
Affiliation(s)
- Ze-Lian Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu Dong
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Yao Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|