1
|
Hung WH, Huang TY, Lung CA, Chu CW, Yeh LH. Engineered Ionic Rectifier with Steep Channel Gradient from Angstrom-Scale to Mesoscale Based on Ultrathin MXene-Capped Single Conical Mesochannel: A Promising Platform for Efficient Osmotic Energy Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412169. [PMID: 40026060 DOI: 10.1002/smll.202412169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Ionic rectifier that mimics the directional ion transport in biological ion channels has been shown with potential toward boosting osmotic energy conversion performance. However, the achieved power by existing rectifying devices is still limited, because they are constructed based on tiny nanoscale channels, which experience high resistance. Here, a novel high-performance ionic rectifier (abbreviated as MXene@MC) with steep channel gradient from angstrom-scale to mesoscale is reported by capping an ultrathin 2D Ti3C2Tx MXene laminate on an asymmetric conical mesochannel (MC). The device can strongly rectify ionic current (with a high ratio of 7.3-fold) even in high 0.5 m electrolyte solution, and thus a single channel can achieve an ultra-large osmotic conductance of 0.596 µS. These features enable MXene@MC as an ultrahigh performance osmotic energy generator, achieving an unprecedented osmotic power of 343 pW under a 1000-fold salinity gradient at neutral pH. Notably, simulations are also provided to demonstrate the findings of the proposed ionic rectifier and efficient osmotic energy conversion. This study unravels the underlying physics of ion transport induced by the apparent structural asymmetry of ion-selective channels, thereby providing a promising platform for further development of high-performance osmotic energy generators.
Collapse
Grants
- 113-2124-M-011-002 National Science and Technology Council (NSTC), Taiwan
- 113-2628-E-011-002 National Science and Technology Council (NSTC), Taiwan
- 112-2923-E-011-003-MY3 National Science and Technology Council (NSTC), Taiwan
- 112-2813-C-011-036-E National Science and Technology Council (NSTC), Taiwan
- 111-2222-E-035-006-MY3 National Science and Technology Council (NSTC), Taiwan
- 112-2124-M-002-015 National Science and Technology Council (NSTC), Taiwan
- 113-2628-E-011-005-MY3 National Science and Technology Council (NSTC), Taiwan
- 110-2223-E-011-003-MY3 National Science and Technology Council (NSTC), Taiwan
- and 111-2622-E-011-003 National Science and Technology Council (NSTC), Taiwan
- The Ministry of Education of Taiwan (MOE, "Sustainable Electrochemical Energy Development Center" (SEED) project)
Collapse
Affiliation(s)
- Wen-Hsin Hung
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Ting-Yi Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-An Lung
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chien-Wei Chu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
2
|
Wang P, Tao W, Zhou T, Wang J, Zhao C, Zhou G, Yamauchi Y. Nanoarchitectonics in Advanced Membranes for Enhanced Osmotic Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404418. [PMID: 38973652 DOI: 10.1002/adma.202404418] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Indexed: 07/09/2024]
Abstract
Osmotic energy, often referred to as "blue energy", is the energy generated from the mixing of solutions with different salt concentrations, offering a vast, renewable, and environmentally friendly energy resource. The efficacy of osmotic power production considerably relies on the performance of the transmembrane process, which depends on ionic conductivity and the capability to differentiate between positive and negative ions. Recent advancements have led to the development of membrane materials featuring precisely tailored ion transport nanochannels, enabling high-efficiency osmotic energy harvesting. In this review, ion diffusion in confined nanochannels and the rational design and optimization of membrane architecture are explored. Furthermore, structural optimization of the membrane to mitigate transport resistance and the concentration polarization effect for enhancing osmotic energy harvesting is highlighted. Finally, an outlook on the challenges that lie ahead is provided, and the potential applications of osmotic energy conversion are outlined. This review offers a comprehensive viewpoint on the evolving prospects of osmotic energy conversion.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Weixiang Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Tianhong Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jie Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chenrui Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
3
|
Jiang Y, Wang R, Ye C, Wang X, Wang D, Du Q, Liang H, Zhang S, Gao P. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35666-35674. [PMID: 38924711 DOI: 10.1021/acsami.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Responsive regulation of ion transport through nanochannels is crucial in the design of smart nanofluidic devices for sequencing, sensing, and water-energy nexus. Functionalization of the inner wall of the nanochannel enhances interaction with ions and fluid but restricts versatile chemical approaches and accurate characterizations of fluidic interfaces. Herein, we reveal a responsive regulating mechanism of ion transport through nanochannels by polydopamine (PDA)-induced functionalization on the macroscopic outer surface of nanochannels. Responsive molecules were codeposited with PDA on the outer surface of nanochannels and formed a valve of nanometer thickness to manually manipulate ion transport by changing its gap spacing, surface charge, and wettability under external stimulus. The response ratio can be up to 100-fold by maximizing the proportion of responsive molecules on the outer surface. Laminating the codepositions of different responsive molecules with PDA on the channel's outer surface produces multiple responses. A nearly universal adhesion of PDA with responsive molecules on the open outer surface induces nanochannels responsive to different external stimuli with variable response ratios and arbitrary combinations. The results challenge the primary role of functionalization on the nanoconfined interface of nanofluidics and open opportunities for developing new-style nanofluidic devices through the functionalization of macroscopic interface.
Collapse
Affiliation(s)
- You Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Rongsheng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chunxi Ye
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Mei T, Liu W, Sun F, Chen Y, Xu G, Huang Z, Jiang Y, Wang S, Chen L, Liu J, Fan F, Xiao K. Bio-inspired Two-dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing. Angew Chem Int Ed Engl 2024; 63:e202401477. [PMID: 38419469 DOI: 10.1002/anie.202401477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Voltage-gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio-inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro-inspired devices and brain-liking computing. Here, we reported a two-dimensional nanofluidic ionic transistor based on a MXene membrane with sub-1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene-composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the "NOT", "NAND", and "NOR" gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion-based brain-like computing.
Collapse
Affiliation(s)
- Tingting Mei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Fusai Sun
- State Key Laboratory of Catalysis, 2011-iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physic, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Yuanxia Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Zijia Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Yisha Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Senyao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Lu Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Junjun Liu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, 2011-iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physic, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| |
Collapse
|
5
|
Liu TR, Fung MYT, Yeh LH, Chiang CH, Yang JS, Kuo PC, Shiue J, Chen CC, Chen CW. Single-Layer Hexagonal Boron Nitride Nanopores as High-Performance Ionic Gradient Power Generators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306018. [PMID: 38041449 DOI: 10.1002/smll.202306018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Indexed: 12/03/2023]
Abstract
Atomically thin two-dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single-layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high-performance ion-gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis-driven proton-gradient power up to ≈3 nW under 1000-fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid-base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single-layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions.
Collapse
Affiliation(s)
- Ting-Ran Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Man Yui Thomas Fung
- Department of Chemical Engineering, National Taiwan University, of Science and Technology, Taipei, 10607, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University, of Science and Technology, Taipei, 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jhih-Sian Yang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Pai-Chia Kuo
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Jessie Shiue
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Center of Condensed Matter Science, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
6
|
Zhang Y, Wang H, Wang J, Li L, Sun H, Wang C. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion. Chem Asian J 2023; 18:e202300876. [PMID: 37886875 DOI: 10.1002/asia.202300876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
The potential of harnessing osmotic energy from the interaction between seawater and river water has been recognized as a promising, eco-friendly, renewable, and sustainable source of power. The reverse electrodialysis (RED) technology has gained significant interest for its ability to generate electricity by combining concentrated and diluted streams with different levels of salinity. Nanofluidic membranes with tailored ion transport dynamics enable efficient harvesting of renewable osmotic energy. In this regard, anodic aluminum oxide (AAO) membranes with abundant nanochannels provide a cost-effective nanofluidic platform to obtain structures with a high density of ordered pores. AAO can be utilized in constructing asymmetric composite membranes with enhanced ion flux and selectivity to improve output power generation. In this review, we first present the fundamental structure and properties of AAO, followed by summarizing the fabrication techniques for asymmetric membranes using AAO and other nanostructured materials. Subsequently, we discuss the materials employed in constructing asymmetric structures incorporating AAO while emphasizing how material selection and design can resist and promote efficient energy conversion. Finally, we provide an outlook on future applications and address the challenges that need to be overcome for successful osmotic energy conversion.
Collapse
Affiliation(s)
- Yao Zhang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huijie Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lulu Li
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, P.R. China
| | - Hanjun Sun
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chen Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Zhang X, Li M, Zhang F, Li Q, Xiao J, Lin Q, Qing G. Robust Cellulose Nanocrystal-Based Self-Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304603. [PMID: 37635120 DOI: 10.1002/smll.202304603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low-performance ion exchange membrane to achieve high-efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low-cost raw materials remains challenging. Here, a composite membrane based on the self-assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre-like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation-selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m-2 under a 100-fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well-resourced and sustainable biomass materials for high-efficiency osmotic energy conversion.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Fusheng Zhang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jie Xiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qiwen Lin
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Guangyan Qing
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| |
Collapse
|
8
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|