1
|
Wang J, He J, Ma J, Wang X, Feng C, Zhou Q, Zhang H, Wang Y. In-Sb Covalent Bonds over Sb 2Se 3/In 2Se 3 Heterojunction for Enhanced Photoelectrochemical Water Splitting. Inorg Chem 2024; 63:10068-10078. [PMID: 38758008 DOI: 10.1021/acs.inorgchem.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Antimony selenide is a promising P-type photocatalyst, but it has a large number of deep energy level defects, leading to severe carrier recombination. The construction of a heterojunction is a common way to resolve this problem. However, the conventional heterojunction system inevitably introduces interface defects. Herein, we employ in situ synthesis to epitaxially grow In2Se3 nanosheets on Sb2Se3 nanorods and form In-Sb covalent interfacial bonds. This petal-shaped heterostructure reduced interface defects and enhanced the efficiency of carrier separation and transport. In this work, the photocurrent density in the proposed Sb2Se3/In2Se3 photocathode is 0.485 mA cm-2 at 0 VRHE, which is 30 times higher than that of pristine Sb2Se3 and it has prominent long-term stability for 24 h without obvious decay. The results reveal that the synergy of the bidirectional built-in electric field constructed between In2Se3 and Sb2Se3 and the solid In-Sb interfacial bonds together build a high-efficiency transport channel for the photogenerated carriers that display enhanced photoelectrochemical (PEC) water-splitting performance. This work provides efficient guidance for reducing interface defects via the in situ synthesis and construction of interfacial bonds.
Collapse
Affiliation(s)
- Junyu Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Jialing He
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Jinling Ma
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Xiaodong Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Chuanzhen Feng
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Qingxia Zhou
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Huijuan Zhang
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| | - Yu Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China
| |
Collapse
|
2
|
Elishav O, Blumer O, Vanderlick TK, Hirshberg B. The effect of ligands on the size distribution of copper nanoclusters: Insights from molecular dynamics simulations. J Chem Phys 2024; 160:164301. [PMID: 38647299 DOI: 10.1063/5.0202432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Controlling the size distribution in the nucleation of copper particles is crucial for achieving nanocrystals with desired physical and chemical properties. However, their synthesis involves a complex system of solvents, ligands, and copper precursors with intertwining effects on the size of the nanoclusters. We combine molecular dynamics simulations and density functional theory calculations to provide insights into the nucleation mechanism in the presence of a triphenyl phosphite ligand. We identify the crucial role of the strength of the metal-phosphine interaction in inhibiting the cluster's growth. We demonstrate computationally several practical routes to fine-tune the interaction strength by modifying the side groups of the additive. Our work provides molecular insights into the complex nucleation process of protected copper nanocrystals, which can assist in controlling their size distribution and, eventually, their morphology.
Collapse
Affiliation(s)
- Oren Elishav
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofir Blumer
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - T Kyle Vanderlick
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The Ratner Center for Single Molecule Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|