1
|
Wang X, Gao Q, Li L, Tatrari G, Shah FU, Laaksonen A, Ji X, An R. Quantifying and Decoupling Molecular Interactions of Ionic Liquids with Gold Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12017-12026. [PMID: 38804259 DOI: 10.1021/acs.langmuir.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This work combined gold colloid probe atomic force microscopy (AFM) with a quartz crystal microbalance (QCM) to accurately quantify the molecular interactions of fluorine-free phosphonium-based ionic liquids (ILs) with gold electrode surfaces. First, the interactions of ILs with the gold electrode per unit area (F A ' , N/m2) were obtained via the force-distance curves measured by gold probe AFM. Second, a QCM was employed to detect the IL amount to acquire the equilibrium number of IL molecules adsorbed onto the gold electrode per unit area (NIL, Num/m2). Finally, the quantified molecular interactions of ILs with the gold electrode (F0, nN/Num) were estimated. F0 is closely related to the IL composition, in which the IL with the same anion but a longer phosphonium cation exhibits a stronger molecular interaction. The changes in the quantified interactions of gold with different ILs are consistent with the interactions predicted by the extended Derjaguin-Landau-Verwey-Overbeek theory, and the van der Waals interaction was identified as the major contribution of the overall interaction. The quantified molecular interaction is expected to enable the direct experimental-derived interaction parameters for molecular simulations and provide the virtual design of novel ILs for energy storage applications.
Collapse
Affiliation(s)
- Xin Wang
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, P. R. China
| | - Qingwei Gao
- College of Environmental and Chemical Engineering, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Licheng Li
- Innovation Research Center of Lignocellulosic Functional Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gaurav Tatrari
- Chemistry of Interfaces, Luleå University of Technology, Luleå 97187, Sweden
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, Luleå 97187, Sweden
| | - Aatto Laaksonen
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, Iasi 700487, Romania
| | - Xiaoyan Ji
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden
| | - Rong An
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, P. R. China
| |
Collapse
|
2
|
Gong M, Dong Y, Zhu M, Qin F, Wang T, Shah FU, An R. Cation Chain Length of Nonhalogenated Ionic Liquids Matters in Enhancing SERS of Cytochrome c on Zr-Al-Co-O Nanotube Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8886-8896. [PMID: 38622867 DOI: 10.1021/acs.langmuir.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is a remarkably powerful analytical technique enabling trace-level detection of biological molecules. The interaction of a probe molecule with the SERS substrate shows important distinctions in the SERS spectra, providing inherent fingerprint information on the probe molecule. Herein, nonhalogenated phosphonium-based ionic liquids (ILs) containing cations with varying chain lengths were used as trace additives to amplify the interaction between the cytochrome c (Cyt c) and Zr-Al-Co-O (ZACO) nanotube arrays, strengthening the SERS signals. An increased enhancement factor (EF) by 2.5-41.2 times compared with the system without ILs was achieved. The improvement of the SERS sensitivity with the introduction of these ILs is strongly dependent on the cation chain length, in which the increasing magnitude of EF is more pronounced in the system with a longer alkyl chain length on the cation. Comparing the interaction forces measured by Cyt c-grafted atomic force microscopy (AFM) probes on ZACO substrates with those predicted by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the van der Waals forces became increasingly dominant as the chain length of the cations increased, associated with stronger Cyt c-ZACO XDLVO interaction forces. The major contributing component, van der Waals force, stems from the longer cation chains of the IL, which act as a bridge to connect Cyt c and the ZACO substrate, promoting the anchoring of the Cyt c molecules onto the substrate, thereby benefiting SERS enhancement.
Collapse
Affiliation(s)
- Mian Gong
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Minghai Zhu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fengxiang Qin
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianchi Wang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Liu E, Mercado MIV, Segato F, Wilkins MR. A green pathway for lignin valorization: Enzymatic lignin depolymerization in biocompatible ionic liquids and deep eutectic solvents. Enzyme Microb Technol 2024; 174:110392. [PMID: 38171172 DOI: 10.1016/j.enzmictec.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Lignin depolymerization, which enables the breakdown of a complex and heterogeneous aromatic polymer into relatively uniform derivatives, serves as a critical process in valorization of lignin. Enzymatic lignin depolymerization has become a promising biological strategy to overcome the heterogeneity of lignin, due to its mild reaction conditions and high specificity. However, the low solubility of lignin compounds in aqueous environments prevents efficient lignin depolymerization by lignin-degrading enzymes. The employment of biocompatible ionic liquids (ILs) and deep eutectic solvents (DESs) in lignin fractionation has created a promising pathway to enzymatically depolymerize lignin within these green solvents to increase lignin solubility. In this review, recent research progress on enzymatic lignin depolymerization, particularly in a consolidated process involving ILs/DESs is summarized. In addition, the interactions between lignin-degrading enzymes and solvent systems are explored, and potential protein engineering methodology to improve the performance of lignin-degrading enzymes is discussed. Consolidation of enzymatic lignin depolymerization and biocompatible ILs/DESs paves a sustainable, efficient, and synergistic way to convert lignin into value-added products.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
4
|
Wen C, Li R, Chang X, Li N. Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications. BIOSENSORS 2023; 13:128. [PMID: 36671963 PMCID: PMC9855937 DOI: 10.3390/bios13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs)-based optical nanoprobes for luminescence and surface-enhanced Raman spectroscopy (SERS) applications have been receiving tremendous attention. Every element in the MOF structure, including the metal nodes, the organic linkers, and the guest molecules, can be used as a source to build single/multi-emission signals for the intended analytical purposes. For SERS applications, the MOF can not only be used directly as a SERS substrate, but can also improve the stability and reproducibility of the metal-based substrates. Additionally, the porosity and large specific surface area give MOF a sieving effect and target molecule enrichment ability, both of which are helpful for improving detection selectivity and sensitivity. This mini-review summarizes the advances of MOF-based optical detection methods, including luminescence and SERS, and also provides perspectives on future efforts.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rongsheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Yang J, Petrescu FIT, Li Y, Song D, Shi G. A Novel Bio-Inspired Ag/3D-TiO 2/Si SERS Substrate with Ordered Moth-like Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3127. [PMID: 36144914 PMCID: PMC9501013 DOI: 10.3390/nano12183127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This paper reports a novel method to fabricate a bio-inspired SERS substrate with low reflectivity, ultra-sensitivity, excellent uniformity, and recyclability. First, double layers of polystyrene spheres with different particle sizes were assembled on the surface of a silicon wafer to act as a moth-like template. Second, through the template sacrifice method, the TiO2 film with a three-dimensional moth-like eye structure was induced by the double-layer polystyrene spheres in the previous step, and its microscopic morphology showed a high degree of order. Finally, Ag nanoparticles were assembled on the TiO2 film to form a bio-inspired SERS substrate. This ordered bio-inspired structure can not only reduce reflection, but also reinforce the uniformity of hotspot density, which helps to improve the sensitivity and uniformity of the Raman signal. This bio-inspired SERS substrate can detect R6G molecules at a concentration as low as 1.0 × 10-10 mol/L, and its enhancement factor (EF) can reach 6.56 × 106. In addition, the composite of Ag and TiO2 can realize the photocatalytic degradation of R6G and then realize the recyclability of the SERS substrate.
Collapse
Affiliation(s)
- Jingguo Yang
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | - Ying Li
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dandan Song
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|