1
|
Lutton-Gething ARBJ, Pambudi FI, Spencer BF, Lee D, Whitehead GFS, Vitorica-Yrezabal IJ, Attfield MP. Revealing Disorder, Sorption Locations and a Sorption-Induced Single Crystal-Single Crystal Transformation in a Rare-Earth fcu-Type Metal-Organic Framework. Inorg Chem 2024; 63:22315-22322. [PMID: 39494500 DOI: 10.1021/acs.inorgchem.4c04286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Rare-earth metal-organic frameworks (RE-MOFs) formed in the presence of fluoride donors are a group of complex and applicable MOFs. Determining structural complexity is crucial in applying such MOFs and has been achieved to uncover framework disorders in the important fcu framework topology MOF, Y-ndc-fcu-MOF (1). 1 is found to contain F- groups disordered over the μ3-face-capping sites in its secondary building unit (SBU) and framework distortions upon sorption of different guest molecules. The favored location of the guests is within the octahedral cage of 1 where they interact with the Y3+ centers. The size, shape, and interactions of the different guests lead to subtle distortions within the SBU and adoption of specific orientations of the naphthalene group of the 1,4-naphthalenedicarboxylate framework linkers. The sorption of DMF(l)/H2O(l) lowers the symmetry from cubic Fm3̅m (for MeOH(l), N2(g), CO2(g or l)) to cubic Pa3̅ (for DMF(l)/H2O(l)) symmetry with retention of the fcu topology, and conversion between the Pa3̅ and Fm3̅m structures is induced by solvent exchange. Such disorder and sorption locations and transformation are important considerations during the optimization and application of MOFs for sorption-based technologies.
Collapse
Affiliation(s)
- A R Bonity J Lutton-Gething
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Fajar I Pambudi
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ben F Spencer
- Department of Materials and National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Daniel Lee
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - George F S Whitehead
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Inigo J Vitorica-Yrezabal
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Martin P Attfield
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
2
|
Bicalho HA, Copeman C, Barbosa HP, Rafael Donnarumma P, Davis Z, Quezada-Novoa V, Velazquez-Garcia JDJ, Liu N, Hemmer E, Howarth AJ. Synthesis, Characterization and Photophysical Properties of a New Family of Rare-Earth Cluster-Based Metal-Organic Frameworks. Chemistry 2024; 30:e202402363. [PMID: 39105655 DOI: 10.1002/chem.202402363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
In this work, nine new rare-earth metal-organic frameworks (RE-MOFs, where RE=Lu(III), Yb(III), Tm(III), Er(III), Ho(III), Dy(III), Tb(III), Gd(III), and Eu(III)) isostructural to Zr-MOF-808 are synthesized, characterized, and studied regarding their photophysical properties. Materials with high crystallinity and surface area are obtained from a reproducible synthetic procedure that involves the use of two fluorinated modulators. At the same time, these new RE-MOFs display tunable photoluminescent properties due to efficient linker-to-metal energy transfer promoted by the antenna effect, resulting in a series of RE-MOFs displaying lanthanoid-based emissions spanning the visible and near-infrared regions of the electromagnetic spectrum.
Collapse
Affiliation(s)
- Hudson A Bicalho
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W., Montréal, QC, Canada
- Centre for NanoScience Research, Concordia University, Montréal, QC, Canada
| | - Christopher Copeman
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W., Montréal, QC, Canada
- Centre for NanoScience Research, Concordia University, Montréal, QC, Canada
| | - Helliomar P Barbosa
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Street, Ottawa, ON, Canada
| | - P Rafael Donnarumma
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W., Montréal, QC, Canada
- Centre for NanoScience Research, Concordia University, Montréal, QC, Canada
| | - Zoey Davis
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W., Montréal, QC, Canada
- Centre for NanoScience Research, Concordia University, Montréal, QC, Canada
| | - Victor Quezada-Novoa
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W., Montréal, QC, Canada
- Centre for NanoScience Research, Concordia University, Montréal, QC, Canada
| | - Jose de J Velazquez-Garcia
- Photo Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, 22607, Germany
| | - Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Street, Ottawa, ON, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Street, Ottawa, ON, Canada
| | - Ashlee J Howarth
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W., Montréal, QC, Canada
- Centre for NanoScience Research, Concordia University, Montréal, QC, Canada
| |
Collapse
|
3
|
Abbas M, Murari B, Sheybani S, Joy M, Balkus KJ. Synthesis and Characterization of Highly Fluorinated Hydrophobic Rare-Earth Metal-Organic Frameworks (MOFs). MATERIALS (BASEL, SWITZERLAND) 2024; 17:4213. [PMID: 39274603 PMCID: PMC11396249 DOI: 10.3390/ma17174213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
Tuning a material's hydrophobicity is desirable in several industrial applications, such as hydrocarbon storage, separation, selective CO2 capture, oil spill cleanup, and water purification. The introduction of fluorine into rare-earth (RE) metal-organic frameworks (MOFs) can make them hydrophobic. In this work, the linker bis(trifluoromethyl)terephthalic acid (TTA) was used to make highly fluorinated MOFs. The reaction of the TTA and RE3+ (RE: Y, Gd, or Eu) ions resulted in the primitive cubic structure (pcu) exhibiting RE dimer nodes (RE-TTA-pcu). The crystal structure of the RE-TTA-pcu was obtained. The use of the 2-fluorobenzoic acid in the synthesis resulted in fluorinated hexaclusters in the face-centered cubic (fcu) framework (RE-TTA-fcu), analogous to the UiO-66 MOF. The RE-TTA-fcu has fluorine on the linker as well as in the cluster. The MOFs were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and contact angle measurements.
Collapse
Affiliation(s)
- Muhammad Abbas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Bhargavasairam Murari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Simin Sheybani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Monu Joy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| |
Collapse
|
4
|
Hou L, Xu X, Zhong Z, Tian F, Wang L, Xu Y. Bimetallic MOF-Based Sensor for Highly Sensitive Detection of Ammonia Gases. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38415401 DOI: 10.1021/acsami.3c16745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The demand for the detection of ultralow concentrations of ammonia gas is growing. A bimetallic metal-organic framework (MOF) comprising Prussian blue analogs (PBAs) was used to achieve highly sensitive and stable detection of ammonia gas at room temperature in this study. First, PB was enriched by using ammonia for improved gas sensing properties. Second, a sensitive membrane with more vacancies was formed by partially replacing Fe3+ with Cu2+ through a cation-exchange strategy. Finally, a capacitive sensor was developed for ultralow-concentration ammonia detection using a Cu-Fe PBA sensitive membrane and interdigitated electrodes (IDEs). To investigate the adsorption efficiency of the designed composite sensitive film for ammonia, PBAs nanoparticles were deposited on a quartz microcrystal balance (QCM) via cyclic voltammetry and a hydrothermal method. Approximately 10 ppm of ammonia was adsorbed under 1 atm by the Cu-Fe PBA film prepared using a reaction time of 36 h, and the adsorption efficiency was measured to be 2.2 mmol g-1 using the QCM frequency response. The Cu-Fe PBAs were also tested using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller theory. The introduction of Cu2+ ions significantly increased the specific surface area of Cu-Fe PBAs MOF, and the number of adsorption sites for ammonia also increased; however, its skeleton structure remained similar to that of PB. Then, the capacitive sensor based on Cu-Fe PBA sensitive membrane and IDE was fabricated and the gas sensing detection device was established for ammonia detection. Overall, the developed capacitive sensor exhibits a linear response of 75-1000 ppb and a detection limit of 3.8 ppb for ultralow ammonia concentrations, which makes it superior to traditional detection methods and thus allows excellent application prospects.
Collapse
Affiliation(s)
- Liwei Hou
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Xinyue Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Zhoujun Zhong
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Fengchun Tian
- College of Microelectronic and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Li Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| |
Collapse
|
5
|
Lutton-Gething ARJ, Spencer BF, Whitehead GFS, Vitorica-Yrezabal IJ, Lee D, Attfield MP. Disorder and Sorption Preferences in a Highly Stable Fluoride-Containing Rare-Earth fcu-Type Metal-Organic Framework. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1957-1965. [PMID: 38435049 PMCID: PMC10902816 DOI: 10.1021/acs.chemmater.3c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Rare-earth (RE) metal-organic frameworks (MOFs) synthesized in the presence of fluorine-donating modulators or linkers are an important new subset of functional MOFs. However, the exact nature of the REaXb core of the molecular building block (MBB) of the MOF, where X is a μ2 or 3-bridging group, remains unclear. Investigation of one of the archetypal members of this family with the stable fcu framework topology, Y-fum-fcu-MOF (1), using a combination of experimental techniques, including high-field (20 T) solid-state nuclear magnetic resonance spectroscopy, has determined two sources of framework disorder involving the μ3-X face-capping group of the MBB and the fumarate (fum) linker. The core of the MBB of 1 is shown to contain a mixture of μ3-F- and (OH)- groups with preferential occupation at the crystallographically different face-capping sites that result in different internally lined framework tetrahedral cages. The fum linker is also found to display a disordered arrangement involving bridging- or chelating-bridging bis-bidentate modes over the fum linker positions without influencing the MBB orientation. This linker disorder will, upon activation, result in the creation of Y3+ ions with potentially one or two additional uncoordinated sites possessing differing degrees of Lewis acidity. Crystallographically determined host-guest relationships for simple sorbates demonstrate the favored sorption sites for N2, CO2, and CS2 molecules that reflect the chemical nature of both the framework and the sorbate species with the structural partitioning of the μ3-groups apparent in determining the favored sorption site of CS2. The two types of disorder found within 1 demonstrate the complexity of fluoride-containing RE-MOFs and highlight the possibility to tune this and other frameworks to contain different proportions and segregations of μ3-face-capping groups and degrees of linker disorder for specifically tailored applications.
Collapse
Affiliation(s)
- A. R.
Bonity J. Lutton-Gething
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ben F. Spencer
- Department
of Materials and National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Photon
Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Iñigo J. Vitorica-Yrezabal
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Daniel Lee
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Martin P. Attfield
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
Abbas M, Sheybani S, Mortensen ML, Balkus KJ. Fluoro-bridged rare-earth metal-organic frameworks. Dalton Trans 2024; 53:3445-3453. [PMID: 38247309 DOI: 10.1039/d3dt03814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Rare-earth (RE) metal-organic frameworks (MOFs) offer unique optical, electronic, and magnetic properties. RE metals tend to make binuclear metal nodes resulting in dense nonporous coordination networks. Three dimensional porous RE-MOFs have been reported by preparing bigger metal nodes based on metal clusters often found as hexaclusters or nonaclusters. The formation of metal clusters (>2 metal ions) generally requires the use of fluorinated organic molecules reported as modulators. However, it was recently discovered that these molecules are not modulators, rather they act as reactants and leave fluorine in the metal clusters. The formation and types of fluorinated RE metal clusters have been discussed. These fluorinated clusters offer higher connectivity which results in porous MOFs. The presence of fluorine in these metal clusters offers unique properties, such as higher thermal stability and improved fluorescence. This frontier summarizes recent progress and gives future perspective on the fluorinated metal clusters in the RE-MOFs.
Collapse
Affiliation(s)
- Muhammad Abbas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA.
| | - Simin Sheybani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA.
| | - Marie L Mortensen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA.
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA.
| |
Collapse
|
7
|
Loukopoulos E, Angeli GK, Tsangarakis C, Traka E, Froudas KG, Trikalitis PN. Reticular Synthesis of Flexible Rare-Earth Metal-Organic Frameworks: Control of Structural Dynamics and Sorption Properties Through Ligand Functionalization. Chemistry 2024; 30:e202302709. [PMID: 37823681 DOI: 10.1002/chem.202302709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
An exciting direction in metal-organic frameworks involves the design and synthesis of flexible structures which can reversibly adapt their structure when triggered by external stimuli. Controlling the extent and nature of response in such solids is critical in order to develop custom dynamic materials for advanced applications. Towards this, it is highly important to expand the diversity of existing flexible MOFs, generating novel materials and gain an in-depth understanding of the associated dynamic phenomena, eventually unlocking key structure-property relationships. In the present work, we successfully utilized reticular chemistry for the construction of two novel series of highly crystalline, flexible rare-earth MOFs, RE-thc-MOF-2 and RE-teb-MOF-1. Extensive single-crystal to single-crystal structural analyses coupled with detailed gas and vapor sorption studies, shed light onto the unique responsive behavior. The development of these series is related to the reported RE-thc-MOF-1 solids which were found to display a unique continuous breathing and gas-trapping property. The synthesis of RE-thc-MOF-2 and RE-teb-MOF-1 materials represents an important milestone as they provide important insights into the key factors that control the responsive properties of this fascinating family of flexible materials and demonstrates that it is possible to control their dynamic behavior and the associated gas and vapor sorption properties.
Collapse
Affiliation(s)
- Edward Loukopoulos
- Department of Chemistry, University of Crete Voutes, 71003, Heraklion, Greece
| | - Giasemi K Angeli
- Department of Chemistry, University of Crete Voutes, 71003, Heraklion, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | | | - Eleni Traka
- Department of Chemistry, University of Crete Voutes, 71003, Heraklion, Greece
| | | | | |
Collapse
|
8
|
Mortensen ML, Bisht S, Abbas M, Firouzi H, McCandless GT, Shatruk M, Balkus KJ. Lanthanide Metal-Organic Frameworks Exhibiting Fluoro-Bridged Extended Chains: Synthesis, Crystal Structures, and Magnetic Properties. Inorg Chem 2024; 63:219-228. [PMID: 38150361 DOI: 10.1021/acs.inorgchem.3c03064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Two fluoro-bridged lanthanide-containing metal-organic frameworks (MOFs) were synthesized using 2,2'-bipyridine-4,4'-dicarboxylic acid (BPDC), a fluorinated modulator, and a lanthanide nitrate. The syntheses of MOFs containing Gd3+ or Tb3+ and a closely related MOF structure containing Ho3+, Gd3+, or Tb3+ are presented. The presence of the fluorinated metal chains in these MOFs is shown through single crystal X-ray diffraction, energy dispersion X-ray spectroscopy, 19F nuclear magnetic resonance, and X-ray photoelectron spectroscopy. Magnetic measurements reveal weak antiferromagnetic exchange between the Ln3+ ions mediated by fluoride anions along the zigzag ladder chains present in the crystal structures of these MOFs.
Collapse
Affiliation(s)
- Marie L Mortensen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080, United States
| | - Shubham Bisht
- Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, Florida 32306, United States
| | - Muhammad Abbas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080, United States
| | - Hamid Firouzi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080, United States
| | - Gregory T McCandless
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, Florida 32306, United States
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080, United States
| |
Collapse
|
9
|
Sheybani S, Abbas M, Firouzi HR, Xiao Z, Zhou HC, Balkus KJ. Synthesis of Fluoro-Bridged Ho 3+ and Gd 3+ 1,3,5-Tris(4-carboxyphenyl)benzene Metal-Organic Frameworks from Perfluoroalkyl Substances. Inorg Chem 2023; 62:4314-4321. [PMID: 36857778 DOI: 10.1021/acs.inorgchem.2c04470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A new fluoro-bridged rare-earth (RE) metal-organic framework consisting of 15-connected nonanuclear and 9-connected trinuclear clusters {[RE9-(μ3-F)14(H2O)6][RE3(μ3-F)(H2O)3](HCO2)3-(BTB)6}·(solvent)x 2 (RE = Ho3+ and Gd3+) was synthesized through the transformation of a dimeric complex formulated as bis(2,2'-bipyridine)tetrakis(μ-2-fluorobenzoato-O,O')-bis(2-fluorobenzoato)diRE(III) 1 with the bridging linker 1,3,5-tris(4-carboxyphenyl)benzene (H3BTB). The rare-earth metal ions Ho3+ and Gd3+ were also found to remove fluorine from other organo-fluorine compounds such as perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA), resulting in the new fluoro-bridged RE-MOFs.
Collapse
Affiliation(s)
- Simin Sheybani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Muhammad Abbas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Hamid R Firouzi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Zhifeng Xiao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|