1
|
Silva MB, Serge-Correales YE, Pereira LH, da S. Barud H, Ribeiro SJL, Otaguro H, Assunção RMND. Cellulose Acetate Butyrate Films as a Platform for Energy Upconversion Composites: Design and Properties. ACS OMEGA 2025; 10:18125-18134. [PMID: 40352519 PMCID: PMC12059888 DOI: 10.1021/acsomega.5c02294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
This study presents the development of composite films made from cellulose acetate butyrate (CAB) incorporating NaYF4:Yb3+,Er3+ upconversion particles. The films were synthesized by using a solvent casting method, focusing on optimizing their structural, thermal, and luminescent properties. The upconversion particles were produced via a hydrothermal method and then surface-modified using nitrosonium tetrafluoroborate (NOBF4) to enhance dispersion in polar solvents. Including upconversion particles notably increased the luminescence performance of the films, while adding Tween 80 and dioctyl sodium sulfosuccinate (DSS) significantly improved mechanical and optical characteristics. The structural, morphological, and luminescence properties were thoroughly evaluated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and photoluminescence spectroscopy. Results demonstrated a uniform distribution of particles with well-preserved upconversion properties, revealing that Tween 80 contributed to a higher luminescence intensity than DSS. These findings underscore the potential of CAB-based composites in photonic device applications, offering a promising avenue for advancing energy conversion technologies.
Collapse
Affiliation(s)
- Matheus
V. B. Silva
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38408-100, Brazil
| | - York E. Serge-Correales
- Institute
of Chemistry, State University of São
Paulo, Araraquara, São Paulo 14800-060, Brazil
| | - Lucas H. Pereira
- Institute
of Chemistry, State University of São
Paulo, Araraquara, São Paulo 14800-060, Brazil
| | - Hernane da S. Barud
- Biopolymers
and Biomaterials Laboratory, University
of Araraquara, Araraquara 14801-340, Brazil
| | - Sidney J. L. Ribeiro
- Institute
of Chemistry, State University of São
Paulo, Araraquara, São Paulo 14800-060, Brazil
| | - Harumi Otaguro
- Center
for Marine Studies, Federal University of
Paraná, Pontal
do Paraná, Paraná 83255-976, Brazil
| | - Rosana M. N. de Assunção
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia, Minas
Gerais 38408-100, Brazil
- Institute
of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, Ituiutaba, Minas Gerais 38304-402, Brazil
| |
Collapse
|
2
|
Kumar P, Chandel M, Kataria S, Swami K, Kaur K, Sahu BK, Dadhich A, Urkude RR, Subaharan K, Koratkar N, Shanmugam V. Handheld Crop Pest Sensor Using Binary Catalyst-Loaded Nano-SnO 2 Particles for Oxidative Signal Amplification. ACS Sens 2024; 9:81-91. [PMID: 38113168 DOI: 10.1021/acssensors.3c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In agriculture, pest management is a major challenge. Crop releases volatiles in response to the pest; hence, sensing these volatile signals at a very early stage will ease pest management. Here, binary catalyst-loaded SnO2 nanoparticles of <5 nm were synthesized for the repeated capture and oxidation of the signature volatile and its products to amplify the chemoresistive signal to detect concentrations as low as ≈120 ppb. The sensitivity may be due to the presence of the elements in the Sn-Fe-Pt bond evidenced by extended X-ray absorption fine-structure spectroscopy (EXAFS) that captures and oxidize the volatile without escaping. This strong catalyst may oxidize nontarget volatiles and can cause false signals; hence, a molecular sieve filter has been coupled to ensure high selectivity for the detection ofTuta absolutainfestation in tomato. Finally, with the support of a mobile power bank, the optimized sensor has been assembled into a lightweight handheld device.
Collapse
Affiliation(s)
- Prem Kumar
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Mahima Chandel
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Sarita Kataria
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Kanchan Swami
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Kamaljit Kaur
- Institute of Nano Science and Technology, Mohali 140306, India
| | | | - Ankita Dadhich
- Institute of Nano Science and Technology, Mohali 140306, India
| | - Rajashri R Urkude
- Accelerator Physics & Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Kesavan Subaharan
- ICAR - National Bureau of Agricultural Insect Resources, Bangalore 560064, India
| | - Nikhil Koratkar
- Materials Science Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | |
Collapse
|
3
|
Santhosh M, Park T. Smartphone-integrated paper-based biosensor for sensitive fluorometric ethanol quantification. Mikrochim Acta 2023; 190:477. [PMID: 37993705 DOI: 10.1007/s00604-023-06063-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/21/2023] [Indexed: 11/24/2023]
Abstract
The development of fluorometric paper-based analytical devices (fPADs) integrated with smartphone for fluorometric quantification of ethanol in an instrument-free and portable setup is described. The NAD+-dependent alcohol dehydrogenase immobilized within chitosan modified paper substate was utilized as a bio-recognition element and enzymatically generated NADH was used as a fluorescent probe. 3D-printed imaging setup which houses a paper chip holder and UV-light emitting device (LED) was developed for rapid, accurate capture of the fluorescent images. The biocompatible chitosan layer covering the paper provides a feasible environment for enzyme immobilization and enhances the fluorescence signal. The developed fPADs exhibited high sensitivity for ethanol detection and has a linear range for ethanol detection from 17 µM to 8.75 mM (R2 =0.99). Additionally, the fPADs were applied to quantify ethanol in four different wine samples including red, white, rose, and sparkling wines successfully. Moreover, the fPADs produce reproducible signals without loss of enzyme activity for at least 14 days and ~80% activity remained till 28 days. Thus, the proposed approach can provide a facile, affordable, portable, and instrument-free tool for the onsite quantification of ethanol in real samples and is applicable for food quality controls.
Collapse
Affiliation(s)
- Mallesh Santhosh
- Smart Agriculture Innovation Center, Kyungpook National University, Daegu, Republic of Korea
| | - Tusan Park
- Smart Agriculture Innovation Center, Kyungpook National University, Daegu, Republic of Korea.
- Major in Bio-industrial Machinery Engineering, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
He M, Xiao Y, Wei Y, Zheng B. Semiquantitative and visual detection of ferric ions in real samples using a fluorescent paper-based analytical device constructed with green emitting carbon dots. RSC Adv 2023; 13:31720-31727. [PMID: 37908650 PMCID: PMC10613948 DOI: 10.1039/d3ra05320b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
A simple and portable paper-based analytical device was developed for visual and semiquantitative detection of ferric ion in real samples using green emitting carbon dots (CDs), which were prepared via microwave method using sodium citrate, urea and sodium hydroxide as raw materials and then loaded on the surface of paper substrate. When Fe3+ exists, the green fluorescence of CDs was quenched and significant color change from green to dark blue were observed, resulting the visual detection of Fe3+ with a minimum distinguishable concentration of 100 μM. By analyzing the intensity changes of green channels of test paper with the help of smartphone, the semiquantitative detection was realized within the range of 100 μM to 1200 μM. The proposed paper-based analytical devices have great application prospects in on site detection of Fe3+ in real samples.
Collapse
Affiliation(s)
- Mengyuan He
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Yu Xiao
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Yuanhang Wei
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Bo Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| |
Collapse
|
5
|
Mitra D, Adhikari P, Djebaili R, Thathola P, Joshi K, Pellegrini M, Adeyemi NO, Khoshru B, Kaur K, Priyadarshini A, Senapati A, Del Gallo M, Das Mohapatra PK, Nayak AK, Shanmugam V, Panneerselvam P. Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:103-120. [PMID: 36706690 DOI: 10.1016/j.plaphy.2023.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The current review aims to gain knowledge on the biosynthesis and characterization of nanoparticles (NPs), their multifactorial role, and emerging trends of NPs utilization in modern science, particularly in sustainable agriculture, for increased yield to solve the food problem in the coming era. However, it is well known that an environment-friendly resource is in excessive demand, and green chemistry is an advanced and rising resource in exploring eco-friendly processes. Plant extracts or other resources can be utilized to synthesize different types of NPS. Hence NPs can be synthesized by organic or inorganic molecules. Inorganic molecules are hydrophilic, biocompatible, and highly steady compared to organic types. NPs occur in numerous chemical conformations ranging from amphiphilic molecules to metal oxides, from artificial polymers to bulky biomolecules. NPs structures can be examined by different approaches, i.e., Raman spectroscopy, optical spectroscopy, X-ray fluorescence, and solid-state NMR. Nano-agrochemical is a unification of nanotechnology and agro-chemicals, which has brought about the manufacture of nano-fertilizers, nano-pesticides, nano-herbicides, nano-insecticides, and nano-fungicides. NPs can also be utilized as an antimicrobial solution, but the mode of action for antibacterial NPs is poorly understood. Presently known mechanisms comprise the induction of oxidative stress, the release of metal ions, and non-oxidative stress. Multiple modes of action towards microbes would be needed in a similar bacterial cell for antibacterial resistance to develop. Finally, we visualize multidisciplinary cooperative methods will be essential to fill the information gap in nano-agrochemicals and drive toward the usage of green NPs in agriculture and plant science study.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, West Bengal, India; Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Priyanka Adhikari
- Centre for excellence on GMP extraction facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Pooja Thathola
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Kuldeep Joshi
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Nurudeen O Adeyemi
- Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, Nigeria
| | - Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kamaljit Kaur
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Ankita Priyadarshini
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | | | - Amaresh Kumar Nayak
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Periyasamy Panneerselvam
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India.
| |
Collapse
|
6
|
Chandel M, Kumar P, Arora A, Kataria S, Dubey SC, M D, Kaur K, Sahu BK, De Sarkar A, Shanmugam V. Nanocatalytic Interface to Decode the Phytovolatile Language for Latent Crop Diagnosis in Future Farms. Anal Chem 2022; 94:11081-11088. [PMID: 35905143 DOI: 10.1021/acs.analchem.2c02244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crop diseases cause the release of volatiles. Here, the use of an SnO2-based chemoresistive sensor for early diagnosis has been attempted. Ionone is one of the signature volatiles released by the enzymatic and nonenzymatic cleavage of carotene at the latent stage of some biotic stresses. To our knowledge, this is the first attempt at sensing volatiles with multiple oxidation sites, i.e., ionone (4 oxidation sites), from the phytovolatile library, to derive stronger signals at minimum concentrations. Further, the sensitivity was enhanced on an interdigitated electrode by the addition of platinum as the dopant for a favorable space charge layer and for surface island formation for reactive interface sites. The mechanistic influence of oxygen vacancy formation was studied through detailed density functional theory (DFT) calculations and reactive oxygen-assisted enhanced binding through X-ray photoelectron spectroscopy (XPS) analysis.
Collapse
Affiliation(s)
- Mahima Chandel
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Prem Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Anu Arora
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Sarita Kataria
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Sunil Chandra Dubey
- Plant Protection and Biosafety, Indian Council of Agricultural Research, Krishi Bhawan, Dr. Rajendra Prasad Road, New Delhi, New Delhi 110001, India
| | - Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Kamaljit Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Bandana Kumari Sahu
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Abir De Sarkar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vijayakumar Shanmugam
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|