1
|
Ogbuoji EA, Myers A, Haycraft A, Escobar IC. Impact of common face mask regeneration processes on the structure, morphology and aerosol filtration efficiency of porous flat sheet polysulfone membranes fabricated via nonsolvent-induced phase separation (NIPS). Sep Purif Technol 2023; 324:124594. [DOI: 10.1016/j.seppur.2023.124594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Nazarkina ZK, Stepanova AO, Chelobanov BP, Kvon RI, Simonov PA, Karpenko AA, Laktionov PP. Activated Carbon-Enriched Electrospun-Produced Scaffolds for Drug Delivery/Release in Biological Systems. Int J Mol Sci 2023; 24:ijms24076713. [PMID: 37047685 PMCID: PMC10095318 DOI: 10.3390/ijms24076713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
To vectorize drug delivery from electrospun-produced scaffolds, we introduce a thin outer drug retention layer produced by electrospinning from activated carbon nanoparticles (ACNs)-enriched polycaprolacton (PCL) suspension. Homogeneous or coaxial fibers filled with ACNs were produced by electrospinning from different PCL-based suspensions. Stable ACN suspensions were selected by sorting through solvents, stabilizers and auxiliary components. The ACN-enriched scaffolds produced were characterized for fiber diameter, porosity, pore size and mechanical properties. The scaffold structure was analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that ACNs were mainly coated with a polymer layer for both homogeneous and coaxial fibers. Drug binding and release from the scaffolds were tested using tritium-labeled sirolimus. We showed that the kinetics of sirolimus binding/release by ACN-enriched scaffolds was determined by the fiber composition and differed from that obtained with a free ACN. ACN-enriched scaffolds with coaxial and homogeneous fibers had a biocompatibility close to scaffold-free AC, as was shown by the cultivation of human gingival fibroblasts and umbilical vein cells on scaffolds. The data obtained demonstrated that ACN-enriched scaffolds had good physico-chemical properties and biocompatibility and, thus, could be used as a retaining layer for vectored drug delivery.
Collapse
Affiliation(s)
- Zhanna K Nazarkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alena O Stepanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Boris P Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ren I Kvon
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pavel A Simonov
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Andrey A Karpenko
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|