1
|
Maria MKM, Abdel Moniem EM, Hanafy AK, Farag DBE, Radwan IA, Abbass MMS, El Moshy S, Rady D, Dörfer CE, Fawzy El-Sayed KM. Age-Related Oral and Para-Oral Tissue Disorders: The Evolving Therapeutic and Diagnostic Potential of Exosomes. Dent J (Basel) 2025; 13:106. [PMID: 40136734 PMCID: PMC11941486 DOI: 10.3390/dj13030106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
This review highlights the key molecular and cellular mechanisms contributing to aging, such as DNA damage, mitochondrial dysfunction, telomere shortening, protein dysfunction, and defective autophagy. These biological mechanisms are involved in various oral health conditions prevalent in the elderly, including periodontal disease, oral cancer, xerostomia, dental caries, and temporomandibular joint disorders. Exosomes generated by mesenchymal stem cells possess substantial therapeutic potential. These exosomes are nanosized extracellular vesicles derived from cells and are involved in essential intercellular communication and tissue homeostasis. The exosome-based therapies proved superior to traditional cell-based approaches, due to lower immunogenicity, ease of storage, and avoidance of complications associated with cell transplantation. Furthermore, the diagnostic potential of exosomes as non-invasive biomarkers for aging processes and age-related oral diseases offers insights into disease diagnosis, staging, and monitoring. Among the challenges and future perspectives of translating exosome research from preclinical studies to clinical applications is the need for standardized procedures to fully harness the therapeutic and diagnostic capabilities of exosomes.
Collapse
Affiliation(s)
- Mohamed Khaled Mohamed Maria
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (M.K.M.M.); (D.B.E.F.); (I.A.R.); (M.M.S.A.); (S.E.M.); (D.R.)
| | | | - Ahmed Khaled Hanafy
- Oral Biology Department, Faculty of Dentistry, Egyptian Russian University, Badr City 11829, Egypt;
| | - Dina B. E. Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (M.K.M.M.); (D.B.E.F.); (I.A.R.); (M.M.S.A.); (S.E.M.); (D.R.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (M.K.M.M.); (D.B.E.F.); (I.A.R.); (M.M.S.A.); (S.E.M.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 12588, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (M.K.M.M.); (D.B.E.F.); (I.A.R.); (M.M.S.A.); (S.E.M.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 12588, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (M.K.M.M.); (D.B.E.F.); (I.A.R.); (M.M.S.A.); (S.E.M.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 12588, Egypt
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (M.K.M.M.); (D.B.E.F.); (I.A.R.); (M.M.S.A.); (S.E.M.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 12588, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24118 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 12588, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24118 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
2
|
Amina SJ, Azam T, Dagher F, Guo B. A review on the use of extracellular vesicles for the delivery of drugs and biological therapeutics. Expert Opin Drug Deliv 2024; 21:45-70. [PMID: 38226932 DOI: 10.1080/17425247.2024.2305115] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Exosomes, a type of extracellular vesicles, are effective tools for delivering small-molecule drugs and biological therapeutics into cells and tissues. Surface modifications with targeting ligands ensure precise delivery to specific cells, minimizing accumulation in healthy organs and reducing the side effects. This is a rapidly growing area in drug delivery research and this review aims to comprehensively discuss the recent advances in the field. AREA COVERED Recent studies have presented compelling evidence supporting the application of exosomes as efficient delivery vehicles that escape endosome trapping, achieving effective in vivo delivery in animal models. This review provides a systemic discussion on the exosome-based delivery technology, with topics covering exosome purification, surface modification, and targeted delivery of various cargos ranging from siRNAs, miRNAs, and proteins, to small molecule drugs. EXPERT OPINION Exosome-based gene and drug delivery has low toxicity and low immunogenicity. Surface modifications of the exosomes can effectively avoid endosome trapping and increase delivery efficiency. This exciting technology can be applied to improve the treatments for a wide variety of diseases.
Collapse
Affiliation(s)
- Sundus Jabeen Amina
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Tasmia Azam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|
3
|
Hong J, Son T, Castro CM, Im H. CRISPR/Cas13a-Based MicroRNA Detection in Tumor-Derived Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301766. [PMID: 37340600 PMCID: PMC10460892 DOI: 10.1002/advs.202301766] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
MicroRNAs (miRNAs) in extracellular vesicles (EVs) play essential roles in cancer initiation and progression. Quantitative measurements of EV miRNAs are critical for cancer diagnosis and longitudinal monitoring. Traditional PCR-based methods, however, require multi-step procedures and remain as bulk analysis. Here, the authors introduce an amplification-free and extraction-free EV miRNA detection method using a CRISPR/Cas13a sensing system. CRISPR/Cas13a sensing components are encapsulated in liposomes and delivered them into EVs through liposome-EV fusion. This allows for accurately quantify specific miRNA-positive EV counts using 1 × 108 EVs. The authors show that miR-21-5p-positive EV counts are in the range of 2%-10% in ovarian cancer EVs, which is significantly higher than the positive EV counts from the benign cells (<0.65%). The result show an excellent correlation between bulk analysis with the gold-standard method, RT-qPCR. The authors also demonstrate multiplexed protein-miRNA analysis in tumor-derived EVs by capturing EpCAM-positive EVs and quantifying miR-21-5p-positive ones in the subpopulation, which show significantly higher counts in the plasma of cancer patients than healthy controls. The developed EV miRNA sensing system provides the specific miRNA detection method in intact EVs without RNA extraction and opens up the possibility of multiplexed single EV analysis for protein and RNA markers.
Collapse
Affiliation(s)
- Jae‐Sang Hong
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Taehwang Son
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer CenterMassachusetts General HospitalBostonMA02114USA
| | - Hyungsoon Im
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
4
|
Anoop TM, Basu PK, Chandramohan K, Thomas A, Manoj S. Evolving utility of exosomes in pancreatic cancer management. World J Methodol 2023; 13:46-58. [PMID: 37456979 PMCID: PMC10348087 DOI: 10.5662/wjm.v13.i3.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Despite the development of newer oncological treatment, the survival of patients with pancreatic cancer (PC) remains poor. Recent studies have identified exosomes as essential mediators of intercellular communications and play a vital role in tumor initiation, metastasis and chemoresistance. Thus, the utility of liquid biopsies using exosomes in PC management can be used for early detection, diagnosis, monitoring as well as drug delivery vehicles for cancer therapy. This review summarizes the function, and clinical applications of exosomes in cancers as minimally invasive liquid biomarker in diagnostic, prognostic and therapeutic roles.
Collapse
Affiliation(s)
- Thattungal Manoharan Anoop
- Department of Medical Oncology, Regional Cancer Center, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Palash Kumar Basu
- Department of Avionics, Indian Institute of Space Science & Technology (IIST), Thiruvananthapuram 695547, Kerala, India
| | - K Chandramohan
- Surgical Oncology, Regional Cancer Center, Thiruvananthapuram 695011, Kerala, India
| | - Ajai Thomas
- Department of Medical Oncology, Regional Cancer Center, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - S Manoj
- Department of Medical Oncology, Regional Cancer Center, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
5
|
Gao J, Li A, Hu J, Feng L, Liu L, Shen Z. Recent developments in isolating methods for exosomes. Front Bioeng Biotechnol 2023; 10:1100892. [PMID: 36714629 PMCID: PMC9879965 DOI: 10.3389/fbioe.2022.1100892] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Exosomes are the smallest extracellular vesicles that can be released by practically all cell types, and range in size from 30 nm to 150 nm. As the major marker of liquid biopsies, exosomes have great potential for disease diagnosis, therapy, and prognosis. However, their inherent heterogeneity, the complexity of biological fluids, and the presence of nanoscale contaminants make the isolation of exosomes a great challenge. Traditional isolation methods of exosomes are cumbersome and challenging with complex and time-consuming operations. In recent years, the emergence of microfluidic chips, nanolithography, electro-deposition, and other technologies has promoted the combination and innovation of the isolation methods. The application of these methods has brought very considerable benefits to the isolation of exosomes such as ultra-fast, portable integration, and low loss. There are significant functional improvements in isolation yield, isolation purity, and clinical applications. In this review, a series of methods for the isolation of exosomes are summarized, with emphasis on the emerging methods, and in-depth comparison and analysis of each method are provided, including their principles, merits, and demerits.
Collapse
Affiliation(s)
| | | | | | | | - Liu Liu
- *Correspondence: Zuojun Shen, ; Liu Liu,
| | | |
Collapse
|
6
|
Louis H, Charlie DE, Amodu IO, Benjamin I, Gber TE, Agwamba EC, Adeyinka AS. Probing the Reactions of Thiourea (CH 4N 2S) with Metals (X = Au, Hf, Hg, Ir, Os, W, Pt, and Re) Anchored on Fullerene Surfaces (C 59X). ACS OMEGA 2022; 7:35118-35135. [PMID: 36211036 PMCID: PMC9535727 DOI: 10.1021/acsomega.2c04044] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 05/21/2023]
Abstract
Upon various investigations conducted in search for a nanosensor material with the best sensing performance, the need to explore these materials cannot be overemphasized as materials associated with best sensing attributes are of vast interest to researchers. Hence, there is a need to investigate the adsorption performances of various metal-doped fullerene surfaces: C59Au, C59Hf, C59Hg, C59Ir, C59Os, C59Pt, C59Re, and C59W on thiourea [SC(NH2)2] molecule using first-principles density functional theory computation. Comparative adsorption study has been carried out on various adsorption models of four functionals, M06-2X, M062X-D3, PBE0-D3, and ωB97XD, and two double-hybrid (DH) functionals, DSDPBEP86 and PBE0DH, as reference at Gen/def2svp/LanL2DZ. The visual study of weak interactions such as quantum theory of atoms in molecule analysis and noncovalent interaction analysis has been invoked to ascertain these results, and hence we arrived at a conclusive scientific report. In all cases, the weak adsorption observed is best described as physisorption phenomena, and CH4N2S@C59Pt complex exhibits better sensing attributes than its studied counterparts in the interactions between thiourea molecule and transition metal-doped fullerene surfaces. Also, in the comparative adsorption study, DH density functionals show better performance in estimating the adsorption energies due to their reduced mean absolute deviation (MAD) and root-mean-square deviation (RMSD) values of (MAD = 1.0305, RMSD = 1.6277) and (MAD = 0.9965, RMSD = 1.6101) in DSDPBEP86 and PBE0DH, respectively.
Collapse
Affiliation(s)
- Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Destiny E. Charlie
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Ismail O. Amodu
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Mathematics, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Terkumbur E. Gber
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Ernest C. Agwamba
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|