1
|
Xia Z, Wang C, Wu F, Huang X, Han X, Liu S. Regulating photochromic behavior of a cyanostilbene by cucurbit[ n]uril hosts in aqueous solution. Chem Commun (Camb) 2025; 61:7269-7272. [PMID: 40260789 DOI: 10.1039/d5cc00182j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The effects of cucurbit[n]uril (CB[n]) hosts on the photochromic behaviors of a cyanostilbene derivative (1-Z) are reported. We find that CB[7] favors the Z to E isomerization and CB[8] inhibits the photoreaction of 1-Z. Interestingly, CB[10] induces an emission color change by encapsulating the photodimer of 1-Z in its cavity during irradiation.
Collapse
Affiliation(s)
- Zengyan Xia
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Chunmei Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Fangwei Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
2
|
Banerjee S, Som S, Hiremath SD, Sarkar R. Luminescent Co-Assemblies of Donor-Acceptor Dimeric Cyanostilbenes with (Bio)Anionic Polymeric Templates. Chem Asian J 2025; 20:e202401163. [PMID: 39739763 DOI: 10.1002/asia.202401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/02/2025]
Abstract
Amphiphilic dimeric cyanostilbenes with two donor-acceptor moieties connected through variable aliphatic linkers displayed aggregation in aqueous media to produce red emissive nano-assemblies. In the presence of anionic biopolymers such as ctDNA and heparin, they formed electrostatically driven co-assemblies with enhanced luminescence. Moreover, due to the chiral nature of the bio-templates DNA and heparin, the co-assemblies demonstrated induced chirality features. Although the central double bond in cyanostilbenes is known to undergo various photochemical conversions, these dimeric donor-acceptor cyanostilbenes, in their self-assembled state, essentially remained photoinactive under UV irradiation. However, in the bio-templated co-assemblies, they showed comparatively higher photo-reactivity, which was especially prominent for the ctDNA based co-assemblies. We also found that these co-assemblies can be used as artificial light-harvesting systems by incorporating acceptor dyes and this led to the generation of amplified emission from the acceptor dyes in the NIR range of the spectrum. Furthermore, the co-assemblies demonstrated selective fluorescence quenching in the presence of metal ions such as Cu2+ and Fe2+, highlighting their potential for metal-ion sensing applications.
Collapse
Affiliation(s)
- Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, Nadia, India
| | - Susmit Som
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, Nadia, India
| | - Sharanabasava D Hiremath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, Nadia, India
| | - Richeek Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, Nadia, India
| |
Collapse
|
3
|
K M N, Nag K, Jayamurugan G. Insights into the molecular self-assembly of urea-functionalized acetylenes. NANOTECHNOLOGY 2025; 36:135602. [PMID: 39874606 DOI: 10.1088/1361-6528/adaf2b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.Alk-Ph-NMe2likely did not self-assemble due to reduced hydrophobic interactions and steric hindrance. Interestingly,Alk-Phexhibited a uniform spherulitic pattern and effectively gelled organic solvents and water. This luminescent gel demonstrated multifunctionality, including white light emission when doped with rhodamine-B dye and adsorption of organic cationic dyes (methylene blue and crystal violet) from water. This study offers valuable insights into balancing interactions to achieve desired hierarchical networks and understand material properties, guiding future molecular design.
Collapse
Affiliation(s)
- Neethu K M
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Kritika Nag
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Govindasamy Jayamurugan
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
4
|
Das P, Das T, Koley S, Kumar Baroi M, Das S, Mohanty J, Das D. Time-Encoded Information Encryption with pH Clock Guided Broad-Spectrum Emission by Dynamic Assemblies. Angew Chem Int Ed Engl 2025; 64:e202414239. [PMID: 39171779 DOI: 10.1002/anie.202414239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
With growing threats from counterfeiting-based security breaches, multi-level and specific stimuli-responsive anti-counterfeiting devices and message encryption methods have attracted immense research interest. Fluorescence-based encryption from aggregation-induced emission (AIE)-based materials solves the problems to a considerable extent. However, the development of smarter patterns with hierarchical security levels alongside dynamic display is still challenging. To screen out this complication, we bring forward a pH-switchable fluorescent assembly of an AIEgen and an aliphatic acid. We later temporally direct the molecular assembly with the aid of a chemical trigger-regulated pH clock, generating a transitory multicolor emission, including transient white light generation. The pH-dependent emissions were further implemented in constructing smart multi-input fluorescent chemical AND gates. Subsequently, we integrate the time-gated emissive system to develop an advanced multi-dimensionally secure data encryption strategy. This novel approach enhances anti-counterfeiting measures by introducing an additional layer of security based on temporal characteristics.
Collapse
Affiliation(s)
- Priyam Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Suprotim Koley
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Saurav Das
- Department of Chemistry, Gurucharan College, Silchar, Cachar, Assam-788004, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Wu F, Xia Z, Sun D, Huang X, Hu X, Wu Y, Wang Y, Pei M, Han X, Liu S. Expanding the Color Range of Photoresponsive Multicolor Luminescent System Through Host-Guest Interaction. J Org Chem 2024; 89:14898-14907. [PMID: 39356286 DOI: 10.1021/acs.joc.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Photoresponsive multicolor luminescent systems offer interesting functions, which have led to applications in anticounterfeiting and biological imaging. However, expanding the color range of these materials remains a challenging task. Herein, a carbazole-modified dithienylethene derivative (DTE-CZ) that exhibits modulated fluorescence color changes through the photocyclization reaction and photolysis reaction is synthesized. DTE-CZ emits orange fluorescence, and it can release a fluorophore which emits blue fluorescence by the photolysis reaction, resulting in the color change. Upon complexation of DTE-CZ with cucurbit[10]uril (CB[10]), the fluorescence wavelength will have a blue shift and the photolysis reaction will be inhibited. Benefiting from the influence of CB[10] and the photolysis reaction of free guests, the color range of the photoresponsive system which is composed of free guests and host-guest complexes is further extended. White light emission along with a color shift from yellow-green to blue was achieved by adjusting the ratio of free guests to host-guest complexes. Finally, the photoresponsive multicolor systems are utilized to construct a photostimulated PVA film and an information encryption system. This work provides an alternative strategy for the preparing of photoresponsive multicolor luminescent system and modulation of its color range.
Collapse
Affiliation(s)
- Fangwei Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zengyan Xia
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Dongdong Sun
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xianchen Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yong Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yanmei Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Mengqi Pei
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
6
|
Jia B, Li X, Liu W, Yang Z, Wang Y, Wang Z, Yang L, Liu Y, Fu Y. Multi-stimuli-responsive cyanostilbene derivatives: Their fluorescent and mechanochromic properties, and potential application in water sensing and anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124474. [PMID: 38763018 DOI: 10.1016/j.saa.2024.124474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
In recent years, aggregation-induced emission luminogens (AIEgens) have witnessed numerous groundbreaking advances in fundamental theoretical research and functional applications. Notably, stimuli-responsive AIEgens have achieved remarkable results, demonstrating immense potential for application in various fields such as chemistry, materials science, biology, and medicine. Herein, two multi-stimuli-responsive cyanostilbene derivatives TPE-CNTPA and PH-CNTPA were synthesized by introducing tetraphenylethylene (TPE) and trifluoromethyl groups, respectively. Primarily, under the combined mechanism of aggregation-induced emission (AIE) and twisted intramolecular charge transfer (TICT), TPE-CNTPA and PH-CNTPA exhibit "on-off-on" fluorescent emission characteristics in solution. Secondly, under 365 nm ultraviolet light irradiation, the photo-induced isomerization of PH-CNTPA causes changes in photophysical property, demonstrating its responsiveness to ultraviolet light. In addition, TPE-CNTPA and PH-CNTPA exhibit high-contrast mechanochromic properties, providing broader possibilities for their potential applications in various fields. Moreover, owing to the unique fluorescence emission characteristics, TPE-CNTPA and PH-CNTP have enormous potential for application in the field of encryption anti-counterfeiting. Besides, PH-CNTPA can be utilized for the detection of trace water in single or mixed solvents, demonstrating outstanding sensitivity and anti-interference properties in different solvents. This research work reveals the potential in the fields of water sensing and anti-counterfeiting for these two multi-stimuli-responsive compounds.
Collapse
Affiliation(s)
- Binbin Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Xiangying Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Wenjun Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Zhou Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Yuanzhen Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Zishi Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Yulong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resource Utilization Technology, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China.
| |
Collapse
|
7
|
Zhang R, Chen Y, Liu Y. Light-Driven Reversible Multicolor Supramolecular Shuttle. Angew Chem Int Ed Engl 2023; 62:e202315749. [PMID: 37971202 DOI: 10.1002/anie.202315749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Light-driven multicolor supramolecular systems mainly rely on the doping of dyes or a photo-reaction to produce unidirectional luminescence. Herein, we use visible light to drive the bidirectional reversible multicolor supramolecular shuttle from blue to green, white, yellow, up to orange by simple encapsulation of spiropyran-modified cyanostilbene (BCNMC) by the macrocyclic cucurbit[8]uril (CB[8]) monomer. The resultant host-guest complex displayed enhanced fluorescence properties, i.e. the multicolor fluorescence shuttle changed from blue to orange in the dark within 2 hours and reverted to the original state upon visible light irradiation for 30 s. Benefiting from the sensitivity of the spiropyran moiety to light, it can spontaneously isomerize from the ring-opened state to a ring-closed isomer in aqueous solution, and this photo-isomerization reaction is a reversible process under visible light irradiation, leading to the multicolor luminescence supramolecular shuttle as a result of intramolecular energy transfer. In addition, the light also drove the reversible conversion of the topological morphology of the host-guest complex from two-dimensional nanoplatelets to nanospheres. Different from the widely reported molecular rotaxane "shuttle", the spiropyran supramolecular shuttle confined in the macrocyclic host CB[8] not only modulated a reversible topological morphology by light but also exhibited multicolor luminescence, which was successfully applied in programmed and rewritable information encryption.
Collapse
Affiliation(s)
- Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, P. R. China
| |
Collapse
|
8
|
Yin C, Yan ZA, Ma X. A supramolecular assembly strategy towards organic luminescent materials. Chem Commun (Camb) 2023; 59:13421-13433. [PMID: 37877212 DOI: 10.1039/d3cc04051h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Supramolecular organic luminescent materials with different dimensionalities usually exhibit different optical properties as well as their potential applications in various fields. Recent reports showed that non-covalent interactions are useful tools to obtain diverse luminescent materials due to their dynamicity and reversibility, including π-π stacking, host-guest interactions, hydrophobic effects, hydrogen bonding, electrostatic effects and so on. In this review, we summarized recent progress in zero-, one-, two-, three-dimensional and disordered organic luminescent materials using the aforementioned strategies, in order to provide a solution for designing luminescent materials with specific structures and morphologies. The relationship between assembly behavior and luminescent properties is discussed in detail, along with the existing difficulties hindering the development of supramolecular assembly systems and future research directions.
Collapse
Affiliation(s)
- Chenjia Yin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Zi-Ang Yan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
9
|
Zhang S, Hao A, Xing P. Solvent-resolved self-assemblies of cholesteryl-cyanostilbene conjugates with photo- and thermo-responsiveness. NANOSCALE 2023. [PMID: 37191115 DOI: 10.1039/d3nr01056b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It remains challenging to construct multifunctional chiral stimulus-responsive molecules and to modulate their morphology at the nanoscale. In this paper, we synthesized a novel chiral molecule with both photoactive and potentially bioactive properties and found that the morphological changes of its self-assembly were influenced by solvent polarity and light exposure. This work enabled the synthesized molecule to undergo Z-E isomerization efficiently under light irradiation by introducing highly oriented hydrogen bonds into the cyanostilbene part. The photoisomerization of the cyanostilbene part from Z- to E-type was further exploited, leading to morphological changes from nanohelices to vesicles with chiroptical evolution. The light-modulated supramolecular chirality and nanostructure provide a green and efficient method for the design of responsive chiral materials.
Collapse
Affiliation(s)
- Shuqing Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
10
|
Xiao T, Tang L, Ren D, Diao K, Li ZY, Sun XQ. Fluorescent Nanoassemblies in Water Exhibiting Tunable LCST Behavior and Responsive Light Harvesting Ability. Chemistry 2023; 29:e202203463. [PMID: 36428221 DOI: 10.1002/chem.202203463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Responsive fluorescent nanomaterials have been received considerable attention in recent years. In this work, a bola-type amphiphilic molecule, CSO, was synthesized which contains a hydrophobic cyanostilbene core and hydrophilic oligo(ethylene glycol) (OEG) coils at both sides. The cyanostilbene group is aggregation-induced emission (AIE) active, while the OEG coils are thermo-responsive. As a result, the CSO molecules can self-assemble into blue-fluorescent nanoassemblies with lower critical solution temperature (LCST) behavior in aqueous media. It is noteworthy that the LCST behavior can be reversibly regulated with changes in concentration and the introduction of K+ . Intriguingly, fluorescence of CSO assembly shows a blue-shift upon heating. Finally, by employing CSO as a light capturing antenna and energy donor, an artificial light harvesting system with tunable emission and thermo-responsive characteristics was fabricated. This study not only demonstrates an integrated approach to create responsive fluorescent nanomaterials, but also shows great potential for producing luminescent materials and mimicking photosynthesis in nature.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Lu Tang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongxing Ren
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kai Diao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zheng-Yi Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiao-Qiang Sun
- Institute of Urban & Rural Mining, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|