1
|
Fang Z, Jiang J, Guo H, Lin X, Wu X, Zhuo Z, Lu N. Ultrahigh Potassium Storage Capacity of Ca 2Si Monolayer with Orderly Multilayered Growth Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401736. [PMID: 39030958 DOI: 10.1002/smll.202401736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Indexed: 07/22/2024]
Abstract
As the rising renewable energy demands and lithium scarcity, developing high-capacity anode materials to improve the energy density of potassium-based batteries (PBBs) is increasingly crucial. In this work, a unique orderly multilayered growth (OMLG) mechanism on a 2D-Ca2Si monolayer is theoretically demonstrated for potassium storage by first-principles calculations. The global-energy-minimum Ca2Si monolayer is a semiconductor with isotropic mechanical properties and remarkable electrochemical properties, such as a low potassium ion migration energy barrier of 0.07 eV and a low open circuit voltage ranging from 0.224 to 0.003 V. Most notably, 2D-Ca2Si demonstrates an ultrahigh theoretical specific capacity of 5459 mAh g-1 and a total specific capacity of 610 mAh g-1, reaching up to 89% of the capacity of a potassium metal anode. Remarkably, the OMLG mechanism facilitates stable, dendrite-free deposition of hcp-K metal layers on the 2D-Ca2Si surface, where the ultrahigh and gradually converging lattice match as the layers increase is the key to achieving theoretically near-infinite growth. The study theoretically demonstrates the Ca2Si monolayer a highly promising anode material, and offers a novel potassium storage strategy for designing 2D anode materials with high specific capacity, rapid potassium-ion migration, and good safety.
Collapse
Affiliation(s)
- Zhiyu Fang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, 241000, China
| | - Jiaxin Jiang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, 241000, China
| | - Hongyan Guo
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, 241000, China
| | - Xiangsong Lin
- School of Medical Imageology, Wannan Medical College, Wuhu, 241002, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Rd., Hefei, 230026, China
| | - Zhiwen Zhuo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Rd., Hefei, 230026, China
| | - Ning Lu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
2
|
Zou L, Jiang J, Guo H, Zuo G, Wu X, Lu N, Zhuo Z. Biphenylite as Anode Materials for Alkali Metal Ion Batteries with Self-Enhanced Storage Mechanism. J Phys Chem Lett 2023; 14:11513-11521. [PMID: 38090810 DOI: 10.1021/acs.jpclett.3c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
In this work, we theoretically investigate the feasibility of biphenylite, the van der Waals layered bulk structure from experimental biphenylene network monolayers, as an anode material for alkali metal ions. The results indicate that the theoretical properties of Li, Na, and K in biphenylite are generally beyond those in graphite. Li-biphenylite exhibits a high specific capacity of 744 mAh·g-1, with a corresponding voltage range of 0.90-0.36 V, low diffusion barrier (<0.30 eV), and small volume change (∼9.9%), far exceeding those of Li-graphite. Moreover, a novel self-enhanced storage mechanism is observed and unveiled, in which the heavy intercalation of Li atoms (i.e., electron doping) induces puckered distortion of the nonhoneycomb carbon frameworks to enhance the intercalation ability and capacity of Li ion via a chemical activation of carbon frameworks. Possessing excellent anode performance beyond graphite, biphenylite is a promising "all-around" anode material candidate for alkali metal ion batteries, especially for lithium ion batteries.
Collapse
Affiliation(s)
- Lanlan Zou
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jiaxin Jiang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Hongyan Guo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - GuiZhong Zuo
- Institute of Plasma Physics, HIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Lu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhiwen Zhuo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
3
|
Singh T, Choudhuri JR, Rana MK. α-graphyne as a promising anode material for Na-ion batteries: a first-principles study. NANOTECHNOLOGY 2022; 34:045404. [PMID: 36240696 DOI: 10.1088/1361-6528/ac9a54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Lithium-ion batteries (LIBs) have emerged as a technological game-changer. Due to the rising price of lithium and the environmental concerns LIBs pose, their use is no longer viable. Sodium (Na) may be the best contender among the alternatives for replacing lithium. Conventional graphite has a limited capacity for Na storage. Hence,α-graphyne, an allotrope of carbon, was studied here as a potential anode material for Na-ion batteries (NIBs), employing density functional theory. In-plane Na atom adsorption results in a semi-metallic to metallic transition ofα-graphyne. Electronic transport calculations show an increase in current after Na adsorption in graphyne. The successive adsorption of Na atoms on the surface of graphyne leads to a theoretical capacity of 1395.89 mA h g-1, which is much greater than graphite. The average open circuit voltage is 0.81 V, which is an ideal operating voltage for NIBs. Intra- and inter-hexagon Na diffusions have very low energy barriers of 0.18 eV and 0.96 eV, respectively, which ensure smooth operation during charge/discharge cycles. According to this study, theα-graphyne monolayer thus has the potential to be employed as an anode in NIBs.
Collapse
Affiliation(s)
- Tavinder Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha-760010, India
| | - Jyoti Roy Choudhuri
- Department of Chemistry, BMS Institute of Technology and Management, Avalahalli, Yelahanka, Bengaluru, Karnataka-560064, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha-760010, India
| |
Collapse
|