1
|
Schick BW, Vanoppen V, Uhl M, Kruck M, Riedel S, Zhao-Karger Z, Berg EJ, Hou X, Jacob T. Influence of Chloride and Electrolyte Stability on Passivation Layer Evolution at the Negative Electrode of Mg Batteries Revealed by operando EQCM-D. Angew Chem Int Ed Engl 2024; 63:e202413058. [PMID: 39523208 DOI: 10.1002/anie.202413058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Rechargeable magnesium batteries are promising for future energy storage. However, among other challenges, their practical application is hindered by low coulombic efficiencies of magnesium plating and stripping. Fundamental processes such as the formation, structure, and stability of passivation layers and the influence of different electrolyte components on them are still not fully understood. In this work, we gain unique insights into the initial Mg plating and stripping cycles by comparing magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2)- and magnesium tetrakis(hexafluoroisopropyloxy)borate (Mg[B(hfip)4]2)-based electrolytes, each with and without MgCl2, on gold electrodes by highly sensitive operando electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) applying hydrodynamic spectroscopy. With the stable Mg[B(hfip)4]2-based electrolytes, highly efficient and interphase-free cycling is possible and passivation layers are attributed to electrolyte contaminants. These are forming and degrading during the so-called initial conditioning process. With the more reactive Mg(TFSI)2-based electrolyte, thick passivation layers with small pores are growing during cycling. We demonstrate that the addition of chloride lowers the amount of passivated Mg deposits in these electrolytes and accelerates the currentless dissolution of the passivation layer. This has a positive effect since we observe the most efficient cycling and uniform deposition when no interphase is present on the electrode.
Collapse
Affiliation(s)
- Benjamin W Schick
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Viktor Vanoppen
- Department of Chemistry - Ångström Laboratory, Structural Chemistry, Uppsala University, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Matthias Uhl
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Matthias Kruck
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Sibylle Riedel
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
| | - Zhirong Zhao-Karger
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Erik J Berg
- Department of Chemistry - Ångström Laboratory, Structural Chemistry, Uppsala University, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Xu Hou
- Department of Chemistry - Ångström Laboratory, Structural Chemistry, Uppsala University, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
2
|
Schick BW, Hou X, Vanoppen V, Uhl M, Kruck M, Berg EJ, Jacob T. Revealing the Structural Evolution of Electrode/Electrolyte Interphase Formation during Magnesium Plating and Stripping with operando EQCM-D. CHEMSUSCHEM 2024; 17:e202301269. [PMID: 37848390 DOI: 10.1002/cssc.202301269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Rechargeable magnesium batteries could provide future energy storage systems with high energy density. One remaining challenge is the development of electrolytes compatible with the negative Mg electrode, enabling uniform plating and stripping with high Coulombic efficiencies. Often improvements are hindered by a lack of fundamental understanding of processes occurring during cycling, as well as the existence and structure of a formed interphase layer at the electrode/electrolyte interface. Here, a magnesium model electrolyte based on magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2 ) and MgCl2 with a borohydride as additive, dissolved in dimethoxyethane (DME), was used to investigate the initial galvanostatic plating and stripping cycles operando using electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). We show that side reactions lead to the formation of an interphase of irreversibly deposited Mg during the initial cycles. EQCM-D based hydrodynamic spectroscopy reveals the growth of a porous layer during Mg stripping. After the first cycles, the interphase layer is in a dynamic equilibrium between the formation of the layer and its dissolution, resulting in a stable thickness upon further cycling. This study provides operando information of the interphase formation, its changes during cycling and the dynamic behavior, helping to rationally develop future electrolytes and electrode/electrolyte interfaces and interphases.
Collapse
Affiliation(s)
- Benjamin W Schick
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Xu Hou
- Department of Chemistry - Ångström Laboratory, Structural Chemistry, Uppsala University, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Viktor Vanoppen
- Department of Chemistry - Ångström Laboratory, Structural Chemistry, Uppsala University, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Matthias Uhl
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Matthias Kruck
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Erik J Berg
- Department of Chemistry - Ångström Laboratory, Structural Chemistry, Uppsala University, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
3
|
Pérez-Vicente C, Rubio S, Ruiz R, Zuo W, Liang Z, Yang Y, Ortiz GF. Olivine-Type MgMn 0.5 Zn 0.5 SiO 4 Cathode for Mg-Batteries: Experimental Studies and First Principles Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206010. [PMID: 36634973 DOI: 10.1002/smll.202206010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Magnesium driven reaction in olivine-type MgMn0.5 Zn0.5 SiO4 structure is subject of study by experimental tests and density functional theory (DFT) calculations. The partial replacement of Mn in Oh sites by other divalent metal such as Zn to get MgMn0.5 Zn0.5 SiO4 cathode is successfully developed by a simple sol-gel method. Its comparison with the well-known MgMnSiO4 olivine-type structure with (Mg)M1 (Mn)M2 SiO4 cations distribution serves as the basis of this study to understand the structure, and the magnesium extraction/insertion properties of novel olivine-type (Mg)M1 (Mn0.5 Zn0.5 )M2 SiO4 composition. This work foresees to extend the study to others divalent elements in olivine-type (Mg)M1 (Mn0.5 M0.5 )M2 SiO4 structure with M = Fe, Ca, Mg, and Ni by DFT calculations. The obtained results indicate that the energy density can be attuned between 520 and 440 W h kg-1 based on two properties of atomic weight and redox chemistry. The presented results commit to open new paths toward development of cathodes materials for Mg batteries.
Collapse
Affiliation(s)
- Carlos Pérez-Vicente
- Department of Inorganic Chemistry and Chemical Engineering, University Research Institute for Energy and the Environment (IQUEMA), University of Córdoba, Campus of Rabanales, Marie Curie Building, E-14071, Córdoba, Spain
| | - Saúl Rubio
- Department of Inorganic Chemistry and Chemical Engineering, University Research Institute for Energy and the Environment (IQUEMA), University of Córdoba, Campus of Rabanales, Marie Curie Building, E-14071, Córdoba, Spain
| | - Rafaela Ruiz
- Department of Inorganic Chemistry and Chemical Engineering, University Research Institute for Energy and the Environment (IQUEMA), University of Córdoba, Campus of Rabanales, Marie Curie Building, E-14071, Córdoba, Spain
| | - Wenhua Zuo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ziteng Liang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Gregorio F Ortiz
- Department of Inorganic Chemistry and Chemical Engineering, University Research Institute for Energy and the Environment (IQUEMA), University of Córdoba, Campus of Rabanales, Marie Curie Building, E-14071, Córdoba, Spain
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|