1
|
Bao X, Lyu B, Gao D, Chen Z, Ouyang Y, Guo X, Ma J. Eco-friendly synthesis of Cs 3Bi 2Br 9 perovskite quantum dots using castor oil as solvent and ligand for leather anti-counterfeiting. ENVIRONMENTAL RESEARCH 2025; 270:121030. [PMID: 39909090 DOI: 10.1016/j.envres.2025.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
All-inorganic cesium bismuth bromide perovskite quantum dots(Cs3Bi2Br9 PQDs) have emerged as promising alternatives to lead-based perovskite quantum dots with excellent performance due to their low toxicity, drawing extensive attention over recent decades. However, challenges remain in terms of their stability and the reliance on organic solvents during the preparation process. Herein, a novel synthesis method for Cs3Bi2Br9 PQDs is introduced, utilizing eco-friendly castor oil as both the solvent and ligand (CO-Cs3Bi2Br9). These PQDs display a vivid blue emission at 430 nm, with an impressive photoluminescence quantum yield (PLQY) of 21.2%. Furthermore, they maintain 97.3% of their fluorescence intensity after 72 h of environmental exposure. The effects of various components of castor oil, including ricinoleic, oleic and linoleic acid, on crystal growth and properties of the Cs3Bi2Br9 are investigated. Significantly, the presence of conjugated double bonds in linoleic acid, when used as a solvent, results in a PLQY of up to 53% for the synthesized Cs3Bi2Br9 PQDs. Moreover, CO-Cs3Bi2Br9 PQDs are introduced into leather by a layer-by-layer self-assembly method, the bright blue fluorescent pattern can be observed in the CO-Cs3Bi2Br9/leather under ultraviolet irradiation, indicating the leather anti-counterfeiting potential of CO-Cs3Bi2Br9 PQDs. This study opens a novel pathway for the sustainable synthesis of PQDs through the utilization of castor oil-derived natural green solvents.
Collapse
Affiliation(s)
- Xin Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an, 710021, China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an, 710021, China.
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an, 710021, China.
| | - Zhixin Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an, 710021, China
| | - Yang Ouyang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an, 710021, China
| | - Xu Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an, 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials (Shaanxi University of Science & Technology), Xi'an, 710021, China.
| |
Collapse
|
2
|
Sun J, Fu H, Jing H, Hu X, Chen D, Li F, Liu Y, Qin X, Huang W. Synergistic Integration of Halide Perovskite and Rare-Earth Ions toward Photonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417397. [PMID: 39945051 DOI: 10.1002/adma.202417397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Indexed: 03/27/2025]
Abstract
Halide perovskites (HPs), emerging as a noteworthy class of semiconductors, hold great promise for an array of optoelectronic applications, including anti-counterfeiting, light-emitting diodes (LEDs), solar cells (SCs), and photodetectors, primarily due to their large absorption cross section, high fluorescence efficiency, tunable emission spectrum within the visible region, and high tolerance for lattice defects, as well as their adaptability for solution-based fabrication processes. Unlike luminescent HPs with band-edge emission, trivalent rare-earth (RE) ions typically emit low-energy light through intra-4f optical transitions, characterized by narrow emission spectra and long emission lifetimes. When fused, the cooperative interactions between HPs and REs endow the resulting binary composites not only with optoelectronic properties inherited from their parent materials but also introduce new attributes unattainable by either component alone. This review begins with the fundamental optoelectronic characteristics of HPs and REs, followed by a particular focus on the impact of REs on the electronic structures of HPs and the associated energy transfer processes. The advanced synthesis methods utilized to prepare HPs, RE-doped compounds, and their binary composites are overviewed. Furthermore, potential applications are summarized across diverse domains, including high-fidelity anticounterfeiting, bioimaging, LEDs, photovoltaics, photodetection, and photocatalysis, and conclude with remaining challenges and future research prospects.
Collapse
Affiliation(s)
- Jiayu Sun
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Hongyang Fu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Haitong Jing
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Xin Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Daqin Chen
- College of Physics and Energy, Fujian Normal University Fuzhou, Fujian, 350117, P. R. China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Xian Qin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Zhang S, Zhu W, Zhang X, Mei L, Liu J, Wang F. Machine learning-driven fluorescent sensor array using aqueous CsPbBr 3 perovskite quantum dots for rapid detection and sterilization of foodborne pathogens. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136655. [PMID: 39603133 DOI: 10.1016/j.jhazmat.2024.136655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
With the growing global concern over food safety, the rapid detection and disinfection of foodborne pathogens have become critical in public health. This study presents a novel machine learning-driven fluorescent sensor array utilizing aqueous CsPbBr3 perovskite quantum dots (PQDs) for the rapid identification and eradication of foodborne pathogens. The relative signal intensity changes (ΔRGB) generated by the sensor array were analyzed using the machine learning algorithm-Support Vector Machine (SVM). The study achieved the identification and recognition of five pathogens and their mixtures within a concentration range of 1.0 × 103 to 1.0 × 107 CFU/mL with an accuracy rate of 100 %, and the limits of detection (LOD) for the pathogens were found to be low. Additionally, the array also showed excellent performance in the identification of pathogens in tap water, achieving an accuracy rate of 100 %. Furthermore, the fluorescent sensor array was capable of inactivating the pathogens with an efficiency of over 99 % within 30 min post-detection. This development provides an efficient and reliable tool for the field of food safety detection.
Collapse
Affiliation(s)
| | - WeiWei Zhu
- Hefei University of Technology, Hefei 230009, China
| | - Xin Zhang
- Hefei University of Technology, Hefei 230009, China
| | - LiangHui Mei
- Hefei University of Technology, Hefei 230009, China
| | - Jian Liu
- Hefei University of Technology, Hefei 230009, China.
| | - Fangbin Wang
- Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
4
|
Chandra S, Mustafa MA, Ghadir K, Bansal P, Deorari M, Alhameedi DY, Alubiady MHS, Al-Ani AM, Rab SO, Jumaa SS, Abosaoda MK. Synthesis, characterization, and practical applications of perovskite quantum dots: recent update. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9633-9674. [PMID: 39073420 DOI: 10.1007/s00210-024-03309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
This review paper provides an in-depth analysis of Perovskite quantum dots (PQDs), a class of nanomaterials with unique optical and electronic properties that hold immense potential for various technological applications. The paper delves into the structural characteristics, synthesis methods, and characterization techniques of PQDs, highlighting their distinct advantages over other Quantum Dots (QDs). Various applications of PQDs in fields such as solar cells, LEDs, bioimaging, photocatalysis, and sensors are discussed, showcasing their versatility and promising capabilities. The ongoing advancements in PQD research and development point towards a bright future for these nanostructures in revolutionizing diverse industries and technologies.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Electrical Engineering, GLA University, Mathura, 281406, India
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq.
| | - Kamil Ghadir
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dheyaa Yahaia Alhameedi
- Department of Anesthesia, College of Health & Medical Technology, Sawa University, Almuthana, Iraq
| | | | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Salih Jumaa
- Department of Medical Engineering, National University of Science and Technology, Dhi Qar, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
5
|
Zhu Y, Shen H, Ai Q, Feng Y, Shin B, Gonzales M, Yan Y, He Z, Huang X, Zhang X, Han Y, Ajayan PM, Li Q, Lou J. Double Layer SiO 2-Coated Water-Stable Halide Perovskite as a Promising Antimicrobial Photocatalyst under Visible Light. NANO LETTERS 2024; 24:13718-13726. [PMID: 39405436 DOI: 10.1021/acs.nanolett.4c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Halide perovskite nanocrystals (HPNCs) have emerged as promising materials for various light harvesting applications due to their exceptional optical and electronic properties. However, their inherent instability in water and biological fluids has limited their use as photocatalysts in the aqueous phase. In this study, we present highly water-stable SiO2-coated HPNCs as efficient photocatalysts for antimicrobial applications. The double SiO2 layer coating method confers long-term structural and optical stability to HPNCs in water, while the in situ synthesis of lead- and bismuth-based perovskite NCs into the SiO2 shell enhances their versatility and tunability. We demonstrate that the substantial generation of singlet oxygen via energy transfer from HPNCs enables efficient photoinduced antibacterial efficacy under aqueous conditions. More than 90% of Escherichia coli was inactivated under mild visible light irradiation for 6 h. The excellent photocatalytic antibacterial performance suggests that SiO2-coated HPNCs hold great potential for various aqueous phase photocatalytic applications.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Hongchen Shen
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Qing Ai
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yuren Feng
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Bongki Shin
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Mateo Gonzales
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yunrui Yan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Ze He
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Xiaochuan Huang
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Xiang Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yimo Han
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jun Lou
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Zhang J, Yuan Z, Wang C, Liu L, Wang Y, Guo Y, Zhao G. Aqueous-phase dual-functional chiral perovskites for hydrogen sulfide (H 2S) detection and antibacterial applications in Escherichia coli. J Colloid Interface Sci 2024; 661:740-749. [PMID: 38325172 DOI: 10.1016/j.jcis.2024.01.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Perovskite nanocrystals (PNCs) have attracted extensive attention for their potential applications in biology. However, only a handful of PNCs have been scrutinized in the biological domain due to issues such as instability, poor dispersion, and size inhomogeneity in polar solvents. The development of dual-functional perovskite nanomaterials with hydrogen sulfide (H2S) sensing and antibacterial capabilities is particularly intriguing. In this study, we prepared chiral quasi-two-dimensional (quasi-2D) perovskite nanomaterials, Bio(S-PEA)2CsPb2Br7 and Bio(R-PEA)2CsPb2Br7, that were uniformly dispersed in aqueous media. The effective encapsulation of methoxypolyethylene glycol amine (mPEG-NH2) improved water stability and uniformity of particle size. Circular dichroism (CD) signals were created by the successful insertion of chiral cations. These perovskites as probes showed a rapid and sensitive fluorescence quenching response to H2S, and the effect of imaging detection was observed at the Escherichia coli (E. coli) level. As antibacterial agents, their pronounced positive charge properties facilitated membrane lysis and subsequent E. coli death, indicating a significant antibacterial effect. This work has preliminary explored the application of chiral perovskites in biology and provides insight into the development of bifunctional perovskite nanomaterials for biological applications.
Collapse
Affiliation(s)
- Jingran Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Zihan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Chao Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China; National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Lele Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Yanan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
7
|
Zhang J, Zhu Y. Exploiting the Photo-Physical Properties of Metal Halide Perovskite Nanocrystals for Bioimaging. Chembiochem 2024; 25:e202300683. [PMID: 38031246 DOI: 10.1002/cbic.202300683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Perovskite nanomaterials have recently been exploited for bioimaging applications due to their unique photo-physical properties, including high absorbance, good photostability, narrow emissions, and nonlinear optical properties. These attributes outperform conventional fluorescent materials such as organic dyes and metal chalcogenide quantum dots and endow them with the potential to reshape a wide array of bioimaging modalities. Yet, their full potential necessitates a deep grasp of their structure-attribute relationship and strategies for enhancing water stability through surface engineering for meeting the stringent and unique requirements of each individual imaging modality. This review delves into this evolving frontier, highlighting how their distinctive photo-physical properties can be leveraged and optimized for various bioimaging modalities, including visible light imaging, near-infrared imaging, and super-resolution imaging.
Collapse
Affiliation(s)
- Jiahui Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Yifan Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
8
|
Chen Y, Zhong X, Yang Q, Chen H, Hao N, Hu S. A perovskite-based electrochemiluminescence aptasensor for tetracycline screening. LUMINESCENCE 2024; 39:e4717. [PMID: 38504447 DOI: 10.1002/bio.4717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Tetracyclines are currently the most commonly used class of antibiotics, and their residue issue significantly impacts public health safety. In this study, a surface modification of perovskite with cetyltrimethylammonium bromide led to the generation of stable electrochemiluminescence (ECL) emitters in aqueous systems and improved the biocompatibility of perovskite. A perovskite quantum dot-based ECL sensing strategy was developed. Utilizing the corresponding aptamer of the antibiotics, strain displacement reactions were triggered, disrupting the ECL quenching system composed of perovskite and Ag nanoclusters (Ag NCs) on the electrode surface, generating a signal to achieve quantitative detection of several common tetracycline antibiotics. The perovskite quantum dot provided a strong and stable initial signal, while the efficient catalytic activity of the silver cluster enhanced the recognition sensitivity. Tetracycline, chlortetracycline, and oxytetracycline were used as examples to demonstrate the differentiation and quantitative detection through this method. In addition, the aptasensor exhibited analytical performance with the linear range (0.1-10 μM OTC) and good recovery rates of 94.7% to 101.6% in real samples. This approach has the potential to become a sensitive and practical approach for assessing antibiotic residues.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinyi Zhong
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiling Yang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Huiping Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Wang S, Wei Z, Xu Q, Yu L, Xiao Y. Trinity Strategy: Enabling Perovskite as Hydrophilic and Efficient Fluorescent Nanozyme for Constructing Biomarker Reporting Platform. ACS NANO 2024; 18:1084-1097. [PMID: 38149588 DOI: 10.1021/acsnano.3c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Water instability and sensing homogeneity are the Achilles' heel of CsPbX3 NPs in biological fluids application. This work reports the preparation of Mn2+:CsPbCl3@SiO2 yolk-shell nanoparticles (YSNPs) in aqueous solutions created through the integration of ligand, surface, and crystal engineering strategies. The SN2 reaction between 4-chlorobutyric acid (CBA) and oleylamine (OAm) yields a zwitterionic ligand that facilitates the dispersion of YSNPs in water, while the robust SiO2 shell enhances their overall stability. Besides, Mn2+ doping in YSNPs not only introduces a second emission center but also enables potential postsynthetic designability, leading to the switching from YSNPs to MnO2@YSNPs with excellent oxidase (OXD)-like activity. Theoretical calculations reveal that electron transfer from CsPbCl3 to in situ MnO2 and the adsorption-desorption process of 3,3',5,5'-tetramethylbenzidine (TMB) synergistically amplify the OXD-like activity. In the presence of ascorbic acid (AA), Mn4+ in MnO2@YSNPs (fluorescent nanozyme) is reduced to Mn2+ and dissociated, thereby inhibiting the OXD-like activity and triggering fluorescence "turn-on/off", i.e., dual-mode recognition. Finally, a biomarker reporting platform based on MnO2@YSNPs fluorescent nanozyme is constructed with AA as the reporter molecule, and the accurate detection of human serum alkaline phosphatase (ALP) is realized, demonstrating the vast potential of perovskites in biosensing.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongyu Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qi Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
10
|
C G S, Balakrishna RG. Phase transferred and non-coated, water soluble perovskite quantum dots for biocompatibility and sensing. J Mater Chem B 2023; 11:2184-2190. [PMID: 36779786 DOI: 10.1039/d2tb02198f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Despite the excellent optoelectronic properties exhibited by CsPbBr3 QDs (PQDs) for sensing applications, their poor resistance to water does not allow their utilization as probes to detect analytes in aqueous media. The present work provides water soluble PQDs (dispersed in water) prepared by an appropriate phase engineering of the ligand. The dicarboxylate functional ligands at a particular pH allow the protonated state to form solvated carboxyl dimers, which interconnects PQDs, thus avoiding Ostwald ripening and enhancing the photoluminescence quantum yield (PLQY). As a proof of concept, this probe was applied to detect bioamines in water, namely histamine, hexamethylenediamine, phenethylamine, dopamine and thiamine. The probe is highly selective to histamine at concentrations below 500 nM and this selectivity of histamine over dopamine is very interesting and rarely reported. More importantly, this work offers a standard protocol for transferring PQDs from the organic to aqueous phase, for the detection of such biomolecules in water.
Collapse
Affiliation(s)
- Sanjayan C G
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Bangalore 562112, Karnataka, India.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Bangalore 562112, Karnataka, India.
| |
Collapse
|
11
|
Aminzare M, Jiang J, Mandl GA, Mahshid S, Capobianco JA, Dorval Courchesne NM. Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. NANOSCALE 2023; 15:2997-3031. [PMID: 36722934 DOI: 10.1039/d2nr05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite nanocrystals (HPNCs) have emerged at the forefront of nanomaterials research over the past two decades. The physicochemical and optoelectronic properties of these inorganic semiconductor nanoparticles can be modulated through the introduction of various ligands. The use of biomolecules as ligands has been demonstrated to improve the stability, luminescence, conductivity and biocompatibility of HPNCs. The rapid advancement of this field relies on a strong understanding of how the structure and properties of biomolecules influences their interactions with HPNCs, as well as their potential to extend applications of HPNCs towards biological applications. This review addresses the role of several classes of biomolecules (amino acids, proteins, carbohydrates, nucleotides, etc.) that have shown promise for improving the performance of HPNCs and their potential applications. Specifically, we have reviewed the recent advances on incorporating biomolecules with HP nanomaterials on the formation, physicochemical properties, and stability of HP compounds. We have also shed light on the potential for using HPs in biological and environmental applications by compiling some recent of proof-of-concept demonstrations. Overall, this review aims to guide the field towards incorporating biomolecules into the next-generation of high-performance HPNCs for biological and environmental applications.
Collapse
Affiliation(s)
- Masoud Aminzare
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Jennifer Jiang
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Macdonald Engineering Building, Room 355, Montréal, QC, H3A 0C3, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Noémie-Manuelle Dorval Courchesne
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| |
Collapse
|