1
|
Zhang X, Noréus D. Zn-doped NiMoO 4 enhances the performance of electrode materials in aqueous rechargeable NiZn batteries. NANOSCALE 2024; 16:18056-18065. [PMID: 39254506 DOI: 10.1039/d4nr02822h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In this work, zinc was introduced to prepare Ni1-xZnxMoO4 (0 ≤ x ≤ 1) nanoflake electrodes to increase the energy density and improve the cycling stability for a wider range of applications of aqueous rechargeable nickel-zinc (NiZn) batteries. This was achieved using a facile hydrothermal method followed by thermal annealing, which can be easily scaled up for mass production. Owing to the unique nanoflake structures, improved conductivity, and tunable electronic interaction, excellent electrochemical performance with high specific capacitance and reliable cycling stability can be achieved. When the Zn doping is 25%, the Ni0.75Zn0.25MoO4 nanoflake electrode displays a high specific capacitance of 345.84 mA h g-1 (2490 F g-1) at a current density of 1 A g-1 and improved cycling stability at a high current density of 10 A g-1. NiZn cells assembled with Ni0.75Zn0.25MoO4 nanoflake electrodes and zinc electrodes have a maximum specific capacity of 344.7 mA h g-1 and an energy density of 942.53 W h kg-1. This design strategy for nickel-based electrode materials enables high-performance energy storage and opens up more possibilities for other battery systems in the future.
Collapse
Affiliation(s)
- Xingyan Zhang
- Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden.
| | - Dag Noréus
- Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden.
| |
Collapse
|
2
|
Fan Z, Wang W, Ren J, Zhang S, Ren R, Lv YK. Additive-Free, In Situ Rapid Repair of Vacancies in Fe[Fe(CN) 6] Electrodes for Efficient Capacitive Deionization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20725-20735. [PMID: 39304525 DOI: 10.1021/acs.langmuir.4c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Fe[Fe(CN)6] (FeHCF) is considered a promising material for capacitive deionization-desalination of saline wastewater due to its excellent structure. However, additives are usually introduced during the synthesis of FeHCF in order to avoid [Fe(CN)6]3- vacancy defects filled by ligand water, which can result in the appearance of harmful byproducts and additional water treatment costs. In this study, an additive-free in situ vacancy repair strategy is proposed for the rapid synthesis of high-quality FeHCF in a saturated K3Fe(CN)6 solution. During the process of synthesizing FeHCF in solution, a high concentration of [Fe(CN)6]3- is found to facilitate the binding of Fe3+ to [Fe(CN)6]3- and hinder the hydrolysis and coordination reaction of Fe3+. After undergoing repair, FeHCF4 demonstrates an increased capacity and highly reversible electrochemical performance due to the robust structure. When utilized as Faraday cathodes in hybrid capacitive deionization (HCDI) systems, FeHCF4 exhibits a higher salt removal capacity (65.67 mg g-1) and lower energy consumption (0.68 kWh kg-1-NaCl) compared to unrepaired FeHCF1, while still maintaining excellent cycling performance. This environmentally friendly approach of repairing vacancies serves as a source of inspiration for the advancement of high-performance Prussian Blue analogues as capacitive sodium-removing materials.
Collapse
Affiliation(s)
- Zewen Fan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wannan Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jing Ren
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shaofei Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Ruipeng Ren
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030017, Shanxi, China
| | - Yong-Kang Lv
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030017, Shanxi, China
| |
Collapse
|
3
|
Li J, Wang R, Han L, Wang T, El-Bahy ZM, Mai Y, Wang C, Yamauchi Y, Xu X. Enhanced redox kinetics of Prussian blue analogues for superior electrochemical deionization performance. Chem Sci 2024; 15:11814-11824. [PMID: 39092121 PMCID: PMC11290438 DOI: 10.1039/d4sc00686k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 08/04/2024] Open
Abstract
Prussian blue analogues (PBAs), representing the typical faradaic electrode materials for efficient capacitive deionization (CDI) due to their open architecture and high capacity, have been plagued by kinetics issues, leading to insufficient utilization of active sites and poor structure stability. Herein, to address the conflict issue between desalination capacity and stability due to mismatched ionic and electronic kinetics for the PBA-based electrodes, a rational design, including Mn substitution and polypyrrole (ppy) connection, has been proposed for the nickel hexacyanoferrate (Mn-NiHCF/ppy), serving as a model case. Particularly, the theoretical calculation manifests the reduced bandgap and energy barrier for ionic diffusion after Mn substitution, combined with the increased electronic conductivity and integrity through ppy connecting, resulting in enhanced redox kinetics and boosted desalination performance. Specifically, the optimized Mn-NiHCF/ppy demonstrates a remarkable desalination capacity of 51.8 mg g-1 at 1.2 V, accompanied by a high charge efficiency of 81%, and excellent cycling stability without obvious degradation up to 50 cycles, outperforming other related materials. Overall, our concept shown herein provides insights into the design of advanced faradaic electrode materials for high-performance CDI.
Collapse
Affiliation(s)
- Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Ruoxing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Lanlan Han
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Zeinhom M El-Bahy
- Chemistry Department, Faculty of Science, Al-Azhar University Nasr City Cairo Egypt
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University Zhoushan 316022 Zhejiang China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology Huaian 223003 P. R. China
| |
Collapse
|
4
|
Ma J, Xing S, Wang Y, Yang J, Yu F. Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination. NANO-MICRO LETTERS 2024; 16:143. [PMID: 38436834 PMCID: PMC11329485 DOI: 10.1007/s40820-024-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Despite the promising potential of transition metal oxides (TMOs) as capacitive deionization (CDI) electrodes, the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity, posing a major obstacle. Herein, we prepared the kinetically favorable ZnxNi1 - xO electrode in situ growth on carbon felt (ZnxNi1 - xO@CF) through constraining the rate of OH- generation in the hydrothermal method. ZnxNi1 - xO@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores, benefitting the ion transport/electron transfer. And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites, actual activity of redox-active Ni species, and lower adsorption energy, promoting the adsorption kinetic and thermodynamic of the Zn0.2Ni0.8O@CF. Benefitting from the kinetic-thermodynamic facilitation mechanism, Zn0.2Ni0.8O@CF achieved ultrahigh desalination capacity (128.9 mgNaCl g-1), ultra-low energy consumption (0.164 kW h kgNaCl-1), high salt removal rate (1.21 mgNaCl g-1 min-1), and good cyclability. The thermodynamic facilitation and Na+ intercalation mechanism of Zn0.2Ni0.8O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring, respectively. This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping, which is redox-inert, is essential for enhancing the electrochemical performance of CDI electrodes.
Collapse
Affiliation(s)
- Jie Ma
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Siyang Xing
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yabo Wang
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
| | - Jinhu Yang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Bao Y, Hao J, Zhang S, Zhu D, Li F. Structural/Compositional-Tailoring of Nickel Hexacyanoferrate Electrodes for Highly Efficient Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300384. [PMID: 37116117 DOI: 10.1002/smll.202300384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Prussian blue analogs (PBAs) represent a crucial class of intercalation electrode materials for electrochemical water desalination. It is shown here that structural/compositional tailoring of PBAs, the nickel hexacyanoferrate (NiHCF) electrodes in particular, can efficiently modulate their capacitive deionization (CDI) performance (e.g., desalination capacity, cyclability, selectivity, etc.). Both the desalination capacity and the cyclability of NiHCF electrodes are highly dependent on their structural/compositional features such as crystallinity, morphology, hierarchy, and coatings. It is demonstrated that the CDI cell with hierarchically structured NiHCF nanoframe (NiHCF-NF) electrode exhibits a superior desalination capacity of 121.38 mg g-1 , a high charge efficiency of up to 82%, and a large capacity retention of 88% after 40 cycles intercalation/deintercalation. In addition, it is discovered that coating of carbon (C) film over NiHCF can lower its desalination capacity owing to the partial blockage of diffusion openings by the coated C film. Moreover, the hierarchical NiHCF-NF electrode also demonstrates a superior selectivity toward monovalent sodium ions (Na+ ) over divalent calcium (Ca2+ ) and magnesim (Mg2+ ) ions, allowing it to be a promising platform for preferential capturing Na+ ions from brines. Overall, the structural/compositional tailoring strategies would offer a viable option for the rational design of other intercalation electrode materials applied in CDI techniques.
Collapse
Affiliation(s)
- Yang Bao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Jinxin Hao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Shu Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Dechun Zhu
- NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Feihu Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
- NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| |
Collapse
|